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ABSTRACT                                                                                                                                                                                                          

The compressive sensing (CS) technique is a novel tool used to reconstruct images using fewer samples, normally sparse 

in the transform domain, than those required by conventional imaging systems. However, the methods applied for signal 

reconstruction within the CS approach still present some problems in the implementation, mainly due to their intensive 

computational demand and high power consumption requirements. These drawbacks need addressing if this approach is 

followed in systems aimed at e.g. drone autonomous flying or other embedded applications that additionally require very 

short processing times. In this paper we evaluate the use of hardware based parallel processing architecture for the 

implementation of the Orthogonal Matching Pursuit (OMP) algorithm, one of the most efficient CS reconstruction 

algorithms developed so far. To improve the algorithm performance, we target different maximum allowed processing 

times to reach minimum image resolutions required by each system of interest using different sparse (16 and 64) 

amounts of single-pixel generated samples per image. We also target the final image resolution to be above 20 dB in 
terms of the peak signal-to-noise ratio (PSNR). To reduce the execution and processing times required to generate each 

image, we propose implementing parallel kernels in the hardware platform for each of the operations required by the 

algorithms under study. In the proposed implementation the reconstructed images are used to generate video streams that 

form the foundation on which decisions are to be made by the system in continuous time, whereby each single image 

(frame) reconstruction cannot overcome 30 ms in order to maintain the minimum amount of frames per second (fps) 

above 33 (minimum required for an acceptable video stream). The implementation of a variation of the OMP algorithm 

in a graphics processing unit (GPU) using parallel architecture approach allows obtaining processing times 4 or 5 times 

shorter than those obtained if central processing unit (CPU) based architecture implementation is used for the same 

purpose. 
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1. INTRODUCTION 

The compressive sensing (CS) technique [1] offers great accuracy for signal reconstruction applications when 
dealing with a reduced number of measured samples, expandable also to image reconstruction tasks. This approach 

offers shorter processing times [2] if compared to other currently used algorithms, allowing for lower energy 

consumption. Although the signal or image reconstruction processes may be complex, techniques have been developed, 

such as Orthogonal Matching Pursuit (OMP) [3], that allow the algorithms to get more efficient in what the minimum 

processing time required is concerned, and be easily adapted to different technology platforms such as Central 

Processing Units (CPU), Field Programmable Gate Arrays (FPGA) or Graphics Processing Units (GPU) [4]. The GPU 

architecture is oriented toward parallel operations and is a good candidate for the development of matrix based  

processing applications, normally used for image and video reconstruction. Recently, CS techniques have become the 

tool of choice for applications involving reconstruction of telecommunication signals, or images involved in processes 

ranging from Synthetic Aperture Radar (SAR) imaging [2] to single-pixel imaging (SPI) [5] used, for example, in 

biomedical applications. SPI is a perfect example of a system that requires image reconstruction based on an extremely 



 

 
 

 

scarce amount of information, in this case a very reduced amount of illumination patterns generated by an array of 

illumination spots (individual LEDs or an illuminated array of micromirrors) sensed by a single pixel. Thus, we propose 

using the OMP algorithm implemented on both, the GPU and CPU technology platforms, respectively, for a comparative 

study dedicated to SPI applications. For the latter, we evaluated the OMP algorithm [2, 3], the algorithm based on the 

OMP using the Inverse Cholesky Factorization [6], and the Batch-OMP algorithm [7], respectively, concentrating 

specifically on the image reconstruction time and the peak signal-to-noise ratio (PSNR) of the reconstructed images. The 
performed evaluation allows to choose the most efficient algorithm to be implemented using the GPU platform in a 

parallelized manner for SPI tasks. After performing the first implementation using i5 CPU technology, a Jetson Nano 

GPU [8] was used for further implementation of the SPI image reconstruction. For the application of interest, the goal 

specification regarding the maximum processing time allowed for single-image reconstruction is of below 30 ms for 

reconstructed image sizes of respectively 64×64, 64×16, 128×16, and 256×16 virtual pixels. The maximum processing 

time defined will allow for video stream generation with a frame-rate (a frame being defined as each individual 

reconstructed image) close to 33 frames per second (fps) that should allow decision making in continuous time. 

2. DEFINITION OF GOAL SPECIFICATIONS FOR THE SPI SYSTEM OF INTEREST 

The SPI process time resolution is defined by two essential figures of merit. The first one is the time required to 

generate, project, and properly detect a series of different illumination patterns generated by e.g. an array of LEDs 

directed towards and finally reflected by the objects in the scene being imaged [5]. The amount of illumination patterns 

required to reconstruct a 2D image will depend on the spatial resolution (Fmin in Eq. (1)) targeted in the application of 

interest. The minimum time needed to acquire a single illumination pattern by the photodetector (pixel) will be defined 

in terms of its optical sensitivity (that depends of its quantum efficiency and is normally expressed in terms of amperes 

per watt, A/W), its response time, and the distance and reflection index of the objects in the illuminated scene that reflect 

the light comprised within the illumination pattern that is finally detected by the photodetector. This reflected luminous 

signal must additionally at all times be stronger than the signal produced by the background illumination present in the 

system, and especially higher than the photon shot noise generated by that background illumination, in order to be 
properly detected and discriminated. The latter defines the minimum signal integration time (Tint) that the photodetector 

requires to sense each individual luminous pattern and consequently its minimum length of projection. The second figure 

of merit is the highest reachable frequency (FADC in Eq. (1)) of the analog-to-digital converter (ADC) and the overall 

readout and signal processing system used to generate the digital information equivalent to the single-pixel electrical 

response to each of the projected illumination patterns and generate the final 2D digital image. As it can be inferred from 

Eq. (1) [9], there is a trade-off to be considered here. In SPI, Fmin depends directly on the amount of illumination patterns 

sensed. Thus, reducing the amount of projected illumination patterns, or reducing the minimum required processing time 

of the system to generate an image based on the single-pixel response to those illumination patterns, will both negatively 

influence the spatial resolution and the overall quality of the final generated 2D image. On the other hand, increasing the 

image spatial resolution and quality will diminish the video-stream frequency by reducing the amount of possible fps. 

min
/

ADC pattern
F F F                               (1) 

 

The parameter Fmin depends on the amount of real pixels (F) existent in the system of interest used to generate 

the final 2D image. Ideally, F and Fmin should be the same -as in most image sensors-, yet in SPI systems F equals 1. 

Following Eq. (1), in order to obtain the minimum required frame-rate (of at least 33 fps), firstly we need to define the 

minimum required Fmin that can be used by a drone navigation system to identify the objects around it, and secondly, 

determine the highest ADC rate possible (yielding the minimum necessary SNR related to the number of ADC output 

bits required), combined with the shortest Tint possible, imposed by the biggest distance targeted of the objects in the 

scene, their lowest reflection index, the highest possible irradiance of the LED array used, and finally the highest 

background illumination permitted. The ADC resolution, related to its SNR, is defined as the ratio between the 

photodetector output electrical signal -generated by the amount of light impinging its photoactive area that was firstly 

emitted by an array of LEDs and then reflected by the objects in the illuminated scene-, and the system noise floor. This 

noise floor is mainly determined by the background radiation of up to 100,000 lux if the system is to be used in outdoors 

that produces a photon shot noise following Poisson distribution, and adds to the system overall read noise.  



 

 
 

 

It will be important to calculate the minimum number of patterns (Lpattern) that will be used to reconstruct the 

image. The number of patterns can be calculated using Eq. (2) [9], where CF is the compression factor of 3% for a 

grayscale image defined as CF = 8 / nBpp. Here, nBpp stands for the number of generated bits per pixel output. M×N 

corresponds to the size in terms of pixel columns and rows of the reconstructed image that should yield a maximum Fmin 

possible if a maximum number of patterns (Lpattern) allowing for a video stream with 33 fps is set to 128. In the same 

tenor, the illumination pattern capture and processing time should not exceed 10 ms, condition met to keep the image 

generation time below 30 ms, i.e. Fpattern = 30 kHz, and FADC = 100 kHz. 

Lpattern = CF(M×N)                              (2) 

3. OMP ALGORITHM VARIATIONS APPLIED TO SPI IMAGE RECONSTRUCTION 

 As explained above, single image processing time is a critical factor for generation of 2D digital images and video 

streams in SPI systems to be used e.g. during drone navigation. So, aiming at reducing the time required by the system 

for 2D image processing to an absolute minimum, the approach followed in the present work is drastically reducing the 

amount of illumination patterns and thus available reconstruction data, and then performing the actual reconstruction of 

the gathered data adapting the CS approach [9] in form of the OMP algorithm variations, namely: (1) the standard OMP 

algorithm [2, 3], (2) the algorithm based on the OMP using the Inverse Cholesky Factorization [6], and finally (3) using 
the Batch-OMP algorithm [7]. The latter was implemented using a parallel and reconfigurable architecture divided into 

three parallel kernels [4] in order to reduce the processing time and improve its efficiency. For the evaluation of the 

algorithm performance, we made a comparison in terms of the process execution time using respectively a CPU based 

hardware architecture and a GPU based one, maintaining PSNR in all cases above 20 dB (an absolute minimum for the 

application of choice). 

3.1 The Standard Orthogonal Matching Pursuit (OMP) algorithm  

For image processing applications, if the CS approach is pursued, at first the equation y = x needs to be 

solved, where is the dictionary matrix, y is the number of measurement output values obtained from the detector, and 

x is the final 2D image to be reconstructed. Following the OMP algorithm, the measurement signal y and the new 

measurement matrix  are initially considered as input. The principal idea behind the OMP method is finding the space 

solution to the linear system y = x, using a dictionary matrix function defined as  = (:1  :2  …  :N), where :i  

ℂM denotes the i-th column of   called the atom. The OMP algorithm seeks iteratively to select the best atom in the 

matrix able to reduce the residual r (the approximating error) to an acceptable minimum, or reach a previously defined 

accuracy, as expressed in Eqs. (3) and (4). Once the optimum atom is found, the  weights can be renewed and least-

square approximations performed to recover the signal (or reconstruct the image in this case). 

^
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arg min 2y x


         0
K 

                                                                                                            (3) 
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                                                                                                   (4) 

 

In Eqs. (3) and (4) 𝜱 represents the recovering dictionary for the N × K matrix, which can be defined as a 
random matrix [10], a chaos theory based random matrix following the 4zk(1-zk) relation, or can follow a predefined 

designated pattern to be used for image reconstruction, as for example proposed by Hadamard [10], where HnHn
T
 = nIn, 

or using the Discrete Cosine Transformation (DCT) normally used in image processing [10], defined in Eq. (5). 
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To implement the standard OMP algorithm, the three main pursued processes that constitute this method were 

respectively fed into three separate kernel software units: i) the dot product of T (matrix size: M×N), ii) locating the 

maximum value within the ǀ<()-1·x>ǀ matrix for matrix size of (N×1), and iii) implementing the Least Square algorithm. 

It should be considered that Least Square is the most complex kernel based on the x = ((T)-1T)·y relation, since it 

must perform multiplication, transposition and inversion operations, the sizes of which depend on the considered k-

spaces and the number of iterations required [7, 9]. A detailed description of the standard OMP algorithm is presented as 

follows.  

Algorithm 1: Standard Orthogonal Matching Pursuit (OMP) 

OMP algorithm input data: Dictionary , input signal y, target sparsity K 

OMP algorithm output data: sparse representation x that fulfills the relation y=x 
 

Detailed algorithm sequence: 

 
1: set I = {0}, r = x,  = 0  

2: while (stopping test false) do 

3:  proj = T r  # Matching atoms with residual r 

4:  k=arg maxk ǀprojǀ  # Finding the new atom that best matches the residual r 
5:  I = (I, k)   # Support update  

6:  x = ((T)-1 T) y  # Calculate pseudoinverse least squares 

7:   = x   # Approximation update 

8:  r = y -    # Calculate the new residual r 

9:  ǁy - xǁ2 ≤ ε  # Calculate the target error ε 

10: end while 

 

3.1.1 The OMP algorithm using the progressive Inverse Cholesky Factorization 

The standard OMP algorithm is a process for matrix inversion that requires huge amounts of computational 

resources and thus causes high computational costs. So, we propose using instead the algorithm based on the OMP but 

using the progressive Inverse Cholesky Factorization [6] to reduce the processing time and computational resources 

involved in the matrix inversion. The major computational complexity of the OMP algorithm resides in calculating this 

mentioned matrix inversion (line 6 in the detailed OMP algorithm sequence). This problem can be partially solved by 

applying the so-called Cholesky Factorization [6]. For the implementation of the Cholesky Factorization, we must define 

the so-called Gram matrix as G = T that is symmetric and positive. The Gram-matrix can be broken down into two  

triangular matrices using the Cholesky decomposition defined as A = LLT, where L is the triangular Cholesky factor. To 

solve this matrix, at first the system LLT x = T  is to be defined, for which b =   is proposed so that the system can be 

turned into a triangle system defined as Lu = b, where LTx = u. To be able to finally calculate L, the matrix shown in Eq. 

(6) is used, where w = L-1T.  
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3.1.2 The Batch OMP algorithm 

During the OMP algorithm calculation using the Inverse Cholesky Factorization, the operation related to the 

definition of the Gram-matrix, G = 
T
, significantly extends the processing time. In order to reduce the processing 

time, a pre-calculated Gram-matrix G with an initial projection i is used, where p0=Ty is defined, accompanied by a 

stopping criterion in which the normalized residual r is compared to a user pre-defined threshold value, that eliminates 

the need to sequentially calculate this residual. The Batch OMP algorithm, if applied to 2D image reconstruction, 

provides an additional improvement if compared to the other two analyzed algorithms. The latter mainly due to the fact 

that the number of threads pursued gets defined by the pre-defined number of columns in the 2D image data matrix 

which eliminates the need to update the residual r. This significantly reduces the number of operations. To improve the 

efficiency of the algorithm even further, programming on the parallel computing platform and programming model 

CUDA from NVIDIA [11] is proposed, with the aim of parallelizing the reconstruction operation. 

 

Algorithm 2: Batch-OMP algorithm 

Batch OMP algorithm input data: Dictionary , input signal y, target sparsity K 

Batch OMP algorithm output data: sparse representation x that fulfills the relation y ≈ x 
 

Detailed algorithm sequence: 

 
1: set I = {0}, L = [1], p0 = Ty, ε = y·yT, i = 1, G = T  

2: p = p0     # Initial projection 
3: while (εi-1 > ε) do 

4:  k = arg maxk ǀpǀ   # Finding the new atom : i 

5: if  i>1 then    # Cholesky update 
6:  w = Solve for w {Li-1w = Gi-1,k} 

7:  
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 
 
    # Update of the Cholesky decomposition      

8: end if 
9:  I = (I, k)                   # Support update 
10:  xi = Solve for c{LLT xi = p0} 

11:   = Gxi    # Matrix-sparse-vector product for each path 

12:  p = p0 - 

13:  k = xT    # Calculate error 

14:  k = k-1 - k + k-1   # Calculate normal error   

15: end while 

 

 
 

 

4. BATCH-OMP ALGORITHM IMPLEMENTATION USING A GPU PLATFORM 

For the implementation of the Batch-OMP algorithm, the CUDA [11] toolkit CUBLAS based libraries in 

Python were used. The application developed is oriented towards SPI reconstruction, wherefore the measured data for 

the 2D image matrix obtained from the single-pixel (photodetector) output signals are made available. Based on the 

description of the Batch-OMP Algorithm 2 (see above), at first 4 kernels in CUDA were defined for the algorithm 
parallel implementation [9, 12, 13]: 

 

i. The first kernel the input information was defined, the Gram-matrix (G = T generated (line 1 of the 

Algorithm 2: Batch-OMP algorithm), and the residual norm r calculated 

ii. The second kernel was used to calculate the new atom :i (line 4 of the Algorithm 2: Batch-OMP 

algorithm) 



 

 
 

 

iii. The third kernel was used to calculate the Cholesky decomposition (lines 6 and 7 of the Algorithm 2: 

Batch-OMP algorithm), where the matrix N×N was defined in order to calculate the matrix L (see Eq. 

(6) 

 

iv. The fourth kernel was used to calculate the matrix space-vector product (line 11 of the Algorithm 2: 

Batch-OMP algorithm), and also to calculate the normal error e (line 14 of the Algorithm 2: Batch-

OMP algorithm) 

 

4.1 Standard OMP and Batch-OMP performance evaluation 

              To evaluate the SPI 2D image reconstruction performance using respectively the Standard-OMP algorithm on 

the one hand, and the Batch-OMP algorithm on the other, focusing on the processing time required for each, they were 

implemented on both: a CPU based platform and a GPU based one. The following starting conditions were defined for 

the latter (see Fig. 1): i) the sparsity values k has chosen were 16 and 64, ii) the size of the 2D reconstructed end images 

was of 64×64, 64×16, 128×16, and 256×16 virtual pixels, respectively, iii) the images to be reconstructed were at first 

deconstructed using a chaos random pattern [10], generating the 16 and 64 sparsity values, respectively, and afterwards 

reconstructed again using the both algorithms under test applied to the sparsity values mentioned. The hardware 

platforms used to perform the tests were the i5 CPU and the Jetson Nano GPU [8]. The Batch-OMP algorithm 

implemented on the GPU platform ran 2.7 times faster than when it was implemented using the CPU based platform, and 

even 4.5 times faster than the Standard-OMP algorithm implemented on the same two platforms.  
 

 
Figure 1. Performance evaluation results obtained for the Standard-OMP and Batch-OMP algorithms, respectively, running on the i5 
CPU and the Jetson Nano GPU [10] platforms: (a) image reconstruction time required for the sparsity factor k = 16; b) frames per 
second (fps) obtained for the results shown in a); c) image reconstruction time required for the sparsity factor k = 64; d) frames per 
second (fps) obtained for the results shown in c). It can be observed that he GPU architecture allows for processing times shorter at 

least by factor 3 if compared to processing times required by the same algorithm implemented on CPU. 
 
 

As it can be observed in Fig. 1, using the sparsity value k = 16, the standard-OMP algorithm running on the 

CPU platform required 64 ms to generate a 128×16 pixel image (see Fig. 1(a)), which was more than a double than the 

time (30 ms in fig. 1(a)) required by the Batch-OMP algorithm running on the same CPU. Interestingly, the Batch-OMP 

algorithm running on the GPU platform required only one third of the time (11 ms) if compared to the time it required 

for the same task when using the CPU platform. For all results the PSNR obtained was around 23 dB. The proportions 
hold more or less for the 256×16, 64×16, and 64×64 pixel images. For the sparsity value of 64, the Batch-OMP 

algorithm running on GPU required in average 20 ms to reconstruct the same images yielding PSNR = 23 dB. Figs. 1(b) 

and 1(d) show the same information presented in Figs. 1(a) and 1(c) but in terms of fps. An example of a reconstructed 

image with a size of 64×64 virtual pixels, reconstructed using the Batch-OMP algorithm running on the GPU platform 

can be observed in Fig. 2. The original image is shown in Fig. 2(a). As explained above, this image was deconstructed 



 

 
 

 

using chaos theory and then reconstructed again. These reconstructed images shown for sparsity factors of k = 16 on Fig. 

2(b) and k = 64 on Fig. 2(c) present a PSNR level of ~ 24 dB. 

 

 

 

    

Figure 2. An example of a reconstructed image with a size of 64×64 virtual pixels, reconstructed using the Batch-OMP algorithm 
running on the GPU platform: (a) original image deconstructed down to a size of 64×64 pixels; (b) reconstructed image with a sparsity 
value of k = 16; and c) reconstructed image with a sparsity value of k = 64. 

CONCLUSION 

In this paper we analyzed the border conditions and system requirements for a single-pixel based imaging 

system developed to generate a video stream with at least 33 fps to be used for decision making in continuous time by an 

autonomous flying object (drone). The SPI approach requires an array of luminous spots, e.g. an array of LEDs, to emit 

different illumination patterns that will illuminate the scene to be imaged, be reflected by the different objects in that 

scene, and finally be detected by a single photodetector placed alongside the LED array. The spatial resolution (number 

of reconstructed virtual pixels) depends in this case on the amount of different illumination patterns generated. The 

amount of frames per second (fps) delivered by the generated video stream depends, on the other hand, on the time 

required for the emission of the mentioned illumination patterns, their amount, and the time required for their detection 

and processing. The latter imposes the necessity to reduce the data processing time to a minimum. In this regard, 
following the CS approach, we analyzed in detail and compared the standard Orthogonal Matching Pursuit (OMP) 

algorithm, the OMP-Cholesky algorithm variation, and finally the Batch-OMP algorithm, pointing out their advantages 

and disadvantages when implemented on both, CPU based and GPU based platforms, respectively, applying the parallel 

architecture approach. The evaluation showed that a combination of Batch-OMP and OMP-Cholesky algorithms offer 

the best results outperforming the standard OMP algorithm by more than a factor of 3 in what processing time is 

concerned if implemented on the same CPU based platform and even more than a factor of 5 if implemented on a GPU 

based platform using four parallel kernels. The study was carried out considering image sparsity values of 16 and 64, 

respectively, and a PSNR > 22 dB. Thus, it was shown that a video stream with 33 fps can be generated using the SPI 

approach with 2D image resolution of 64×64 virtual pixels and a PSNR < 20 dB if the combined Batch-OMP and OMP- 

Cholesky algorithm is implemented on a 4 kernel GPU platform. In this case, the system processing time for each 

generated 2D image is < 20 ms, and the time for the generation and detection of illumination patterns is of below 13 ms. 
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