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Abstract—In the field of computational imaging (CI), super-
vised training methods have long been the dominant approach
for neural networks in optics. These methods heavily rely on
large amounts of labeled data to adjust network weights and
biases effectively. However, obtaining a substantial number of
ground-truth images for training poses significant challenges
in real-world scenarios like phase retrieval or 2D/3D imaging
applications. To overcome this limitation, we propose an inno-
vative approach that merges principles from physics with deep
neural networks. Our objective is to reduce the dependency on
extensive labeled data by incorporating a comprehensive physical
model that accurately represents the image formation process.
This unique approach allows us to achieve 3D imaging through
phase retrieval, utilizing techniques such as Gerchberg-Saxton
(GS) and Fourier-Rytov (FR), in combination with deep learning
architectures to extract intricate information from the phase.
Consequently, this information enables us to detect changes in an
object’s surface and generate a mesh representation of its 2D/3D
structure. In our proposal, we introduce Res-U2Net, a novel
untrained neural network designed to estimate the 3D structure
of objects. By adopting a unified method for object analysis,
this approach presents a new paradigm for neural network
design, seamlessly integrating physical models. Furthermore, this
framework can be extended to address a wide range of other
computational imaging challenges

Index Terms—2D/3D Phase retrieval, Deep Learning, Un-
trained, Res-U2Net, Gerchberg-Saxton (GS), Fourier-Rytov
(FR),NR-IAQ BRISQUE,NIQE.

I. INTRODUCTION

Recently, the field of computational imaging (CI) has
made remarkable strides, thanks to the integration of deep
learning (DL) techniques [1]. DL has shown great promise
in addressing the challenging inverse problems encountered
in CI applications [2]. Pioneering studies have demonstrated
the efficacy of DL in various CI domains, such as optical
tomography, 3D reconstruction, phase retrieval, computational
ghost imaging, digital holography, imaging through scattering
media, fluorescence lifetime imaging, unwrapping, and fringe
analysis [3]–[10]. Typically, DL-based artificial neural net-
works in CI rely on extensive labeled datasets for training to

optimize their weight and bias parameters [11]. This process
enables the network to learn a universal function that maps
data from the object space to the image space. However,
this training can be time-consuming, while the reconstruction
itself is often rapid [12]. Acquiring a diverse and substantial
training dataset becomes challenging in real-world scenarios
where novel objects or scenarios are encountered, limiting the
network’s generalization capabilities [13].

Recent advances in imaging applications have shown
promise with unsupervised learning techniques, particularly
utilizing untrained networks [14]. These approaches leverage
the inherent structure of neural networks without requiring
training data, leading to impressive results. Examples include
the deep image prior [14] and deep decoder [15], which exploit
the network structure as a prior for image statistics, even
without prior training. This involves using a deep network with
randomly initialized weights as an image generator, which is
iteratively updated using a loss function that compares the
generated image with the input data.

While these methods have been successful in simulated im-
age denoising, deblurring, phase retrieval, and super-resolution
tasks [13], challenges arise in computational imaging where
acquired measurements do not directly resemble the recon-
structed image. Instead, a forward model based on the under-
lying physics of the image formation governs the relationship
between the scene and the measurements. For instance, in
phase retrieval, the model constructs the phase of a sample
using known amplitude distribution pairs at both the sample
and measuring planes, employing methods such as Gerchberg-
Saxton (GS) [16] and Fourier-Rytov (FR) [17].To address
these challenges and enhance the capabilities of deep neural
networks in computational imaging, a combination of the
UNet architecture and physics-informed techniques can be
employed [13], [18]. The UNet’s encoder-decoder structure en-
ables effective capture of both local and global image features.
By incorporating physics-based constraints and priors into the
network’s design, a physics-enhanced deep neural network can
more accurately model the image formation process, leading
to improved quality and fidelity of reconstructed images.

In this study, we propose a method for 2D/3D image979-8-3503-0676-7/23/$31.00 ©2023 IEEE20
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reconstruction using phase retrieval with untrained deep learn-
ing and mesh estimation over the phase image [19]. We
explore various physics-based methods, including Gerchberg-
Saxton (GS) and Fourier-Rytov (FR), implemented using the
Untrained Deep Learning UNet [20], and we propose a new
architecture type called Res-U2Net.

II. RELATED WORKS

A. Optimizing Nonlinear Phase Retrieval

In the initial phases of development, phase retrieval tech-
niques primarily leaned on the iterative alternating minimiza-
tion (AM) approach as detailed in [21]. These techniques
involved a cyclic process of updating the estimated image
x̃ ∈ CNxN by transitioning between the spatial and Fourier
domains. Nevertheless, the AM-based algorithms came with
certain limitations. They often faced issues of stagnation and
demonstrated gradual convergence rates, sometimes demand-
ing more than 1000 iterations to arrive at a solution [22].

B. Deep Learning Phase Retrieval

Extensive research explores deep learning methods for
phase retrieval (PR), offering faster non-iterative solutions
compared to traditional optimization. These methods excel in
PR from a single Fourier intensity measurement, previously
deemed impossible. Categorizations of deep learning-based PR
are based on physics integration.

• The first category involves feedforward networks estimat-
ing target images from intensity measurements. While
some work for simple images, efficacy with complex
ones is uncertain. Generative adversarial networks and
ResNet structures in this category struggle with intricate
datasets [23].

• The second category enhances reconstructed image qual-
ity by incorporating physics. Methods include spectral
initialization or cascaded networks with multiple mul-
tilayer perceptrons (MLPs), which can produce noisy
images or need large networks [24].

• The third category employs UNet, a popular architecture,
on iterative methods. It capitalizes on the iterative nature
of PR and problem physics. UNet serves as a neural
network mapping intensity to phase. Trained on intensity-
phase pairs, it refines phase estimates iteratively for new
data until convergence [13].

III. PHYSICS MODEL

The process of phase retrieval aims to reconstruct a desired
object Eq. (1), denoted as x∗, using information about the
measured intensities y and the characteristics of the imaging
system represented by the non-linear operator A [25]. The
objective is to recover an estimate of the signal, x̂, from the
measurements y. This problem can be formulated as a non-
convex optimization task: x̂ = argminx ∥y − |Ax|∥22 [26].

y = |Ax∗|2 (1)

The matrix A is closely associated with the physical model
of the imaging system. To address this challenge, the Fourier

transform can be employed by defining A as the 2D Fourier
Transform matrix. Several methods utilize the Fourier Trans-
form for phase retrieval, including the Gerchberg-Saxton (GS)
and Fourier-Rytov (FR) methods. However, it should be noted
that accurately reconstructing the original signal is difficult
due to the lack of phase information. The absence of phase
information results in an inverse problem with infinitely many
potential solutions that can produce the same amplitudes in
the Fourier domain.

A. Gerchberg-Saxton (GS)

The Gerchberg-Saxton (GS) algorithm [16] is an iterative
method for phase retrieval from magnitude data. Operating in
the Fourier domain, it begins with random phases assigned to
the Fourier transform, then iterates by updating phases while
keeping magnitudes fixed. This process alternates between
Fourier and spatial domains until convergence. The GS algo-
rithm assumes phase can be determined from magnitude data,
under constraints including non-negativity, often achieved by
using absolute values or squared module of the Fourier trans-
form.

B. Fourier-Rytov (FR)

The Fourier-Rytov (FR) algorithm [27] is a method em-
ployed for phase retrieval, which involves the recovery of
phase information from intensity measurements of a wavefield
with complex values. By relying on the principle that the
Fourier transform of an object’s autocorrelation function holds
the desired phase information. Through an iterative process,
the algorithm estimates the phase of the wavefield by utilizing
its measured intensity and the Fourier transform of its auto-
correlation.

C. Ill-Posed Problem of Phase Retrieval

In the realm of image reconstruction and similar inverse
problems, an ill-posed scenario emerges when minor alter-
ations in measured data lead to substantial uncertainties in
the estimated solution [28]. Such situations arise when crucial
information is absent, as seen in image reconstruction lacking
phase details. This absence of phase information renders the
problem ill-posed due to countless potential solutions that
match given amplitude measurements. Traditional methods
and iterative algorithms like Gerchberg-Saxton and Fourier-
Rytov face challenges in achieving a definitive and accurate so-
lution due to this ill-posed nature, exacerbated by measurement
noise. To mitigate this, leveraging UNet-based techniques
is proposed [18]. UNet is a deep learning architecture that
can learn complex mappings between input and output data
improved phase estimation and convergence for algorithms
like GS and FR. Integrating classical algorithms with UNet
offers a promising approach to address the difficulties posed
by ill-posed problems, enhancing reconstruction robustness.

IV. 2D/3D PHASE RETRIEVAL

In the initial stage of phase retrieval (refer to Fig. 1), an
untrained approach is employed. This involves the application
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of a physics model H, as defined in Section III-A (GS/FR),
to evaluate the input image and generate a diffraction model
I . Subsequently, this diffraction model serves as input for
an untrained neural network in the proposed model. We
assess the performance of two distinct neural networks: UNet
and Res-U2Net, which have been proposed for this purpose
(evaluation the performance the different UNet networks is
document in the reference [29]). The neural network aims to
estimate the phase information θ̃ by comparing the diffraction
model estimate I derived from the estimated phase θ̃ with
the original diffraction model. Training the neural network
involves minimizing the mean square error (MSE) between
the estimated diffraction models I obtained from the input
image and the diffraction models formed from the phase
information I∗. Through this iterative process, the estimated
phase undergoes refinement, enhancing the performance of the
neural network in phase retrieval tasks.

A. Neural Network Res-U2Net
The Res-U2Net architecture is an enhanced version of the

UNet model [18] designed for image segmentation tasks. It
incorporates residual connections at multiple levels to improve
information flow and gradient propagation during training.
The architecture consists of downsampling and upsampling
pathways similar to UNet. In the downsampling pathway,
convolutional layers with batch normalization and ReLU ac-
tivation are followed by max-pooling layers. The key im-
provement lies in the upsampling pathway, where transposed
convolutional layers are used to upsample the feature maps.
Residual connections are established between corresponding
layers in the downsampling and upsampling pathways to
preserve finer details. These connections aid in mitigating the
vanishing gradient problem and enable better feature propaga-
tion. The final layer employs a convolutional operation with
sigmoid activation to produce the segmentation output. Res-
U2Net demonstrates improved performance in various image
segmentation tasks compared to the original UNet (refer to
Figure 2).

B. 3D Phase Reconstruction
We employed the Unified Shape-From-Shading Model (US-

FSM) for the purpose of conducting 3D reconstruction on
the estimated image obtained via phase retrieval. The USFSM
approach enables the creation of three-dimensional represen-
tations by analyzing the spatial intensity variations found in
the recovered two-dimensional image [30]. In order to extract
depth information from the phase retrieval image, which
corresponds to the surface points of the scene, we utilized
the fast sweeping method. This particular method makes use
of the Lax–Friedrichs Hamiltonian technique [31] to solve for
the surface. It employs an iterative sweeping strategy based on
the fast sweeping scheme described in [19] (Refer to Fig. 3
for visual representation).

V. NUMERICAL RESULTS

Our research approach based on neural network and physics
models to tackle 2D/3D phase retrieval challenges. We em-

ploy state-of-the-art techniques like UNet and Res-U2Net,
incorporating pretrained and untrained models. Our primary
focus is enhancing the quality of reconstructed 2D images.
We evaluate model efficacy through NR-IAQ (No-Reference
Image) measurements [32], using BRISQUE for distortion
analysis. Lower BRISQUE scores indicate reduced distortion.
We also employ NIQE (Natural Image Quality Evaluator) [33]
to assess factors like texture and sharpness. In NIQE, higher
values imply lower perceptual quality, while lower values
reflect higher quality (see Table I). We extend our evaluation to
3D images, analyzing meshes via Skewness and MSE metrics.
Through thorough model analysis, we strive to pinpoint the
best strategy for superior image and mesh reconstruction.
Visual representations are in Figure 4 and Figure 5.

In our 2D phase retrieval experiments, we utilize a 440x440
pixel test image (depicted in Figure 5a). These trials employ a
wavelength of 632.8 nm and diffraction distances: 34.36 mm,
34.66 mm, and 37.15 mm. Various untrained deep learning
models are employed, including GS-based UNet (Figure 5b)
and FR-based Res-U2Net (Figure 5d). The approach involves
up to 1000 iterations, a learning rate of 10−4, and reconstitu-
tion times (500-800 ms) to assess neural network and physics
model performance. The implementation employs the Keras
framework in Python [34], utilizing an NVIDIA GTX 1080
GPU for computations.

Our methodology commences by reconstructing the 2D
phase, followed by the application of the Shape-From-Shading
model (USFSM) to generate a 3D image for each model. This
process entails a harmonious fusion of neural network and
physics models. The assessment of 3D image quality involves
two key metrics: MSE [35] and Skewness (see Table II).
Skewness quantifies the symmetry of 3D shapes, where a value
approaching 0 indicates optimal mesh quality, while a value
close to 1 implies a wholly degenerate mesh [36]. We compare
the normalized 3D mesh derived from the phase reconstruction
with the normalized 3D mesh of the test images (as illustrated
in Fig. 5c and 5e).

TABLE I: Evaluating 2D Phase Retrieval Images Using NR-
IAQ BRISQUE and NIQE Comparison of UNet (GS) and Res-
U2Net (FR).

Method UNet(GS) Res− U2Net(FR)
BRISQUE 11 2.83
NIQE 5.45 1.85

TABLE II: 3D phase retrieval MSE and Skewness: Compari-
son of UNet (GS) and Res-U2Net (FR).

Method UNet(GS) Res− U2Net(FR)
MSE 0.134 0.055
Skewness 0.755 0.007

VI. CONCLUSION AND DISCUSSION

This comprehensive study compares 2D and 3D imaging
phase-retrieval techniques, evaluating UNet and Res-U2Net
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Fig. 1: The phase retrieval process can be summarized by the following block diagram: Initially, we employ the Physics-Model
(GS or FR) H to process the input image, yielding a diffration model I. Subsequently, this model serves as the input for a
complex neural network. The neural network (Unet or Res-U2Net) produces an output that represents the estimated phase,
denoted as θ̃. To obtain an estimate for the diffration model, denoted as I∗, we apply the Physics-Model to the estimated phase
θ̃. To adjust the parameters of the neural network, including θ̃, we calculate the mean square error (MSE) between I and I∗,
which serves as the loss value.

Fig. 2: The Encoder Layer of Res-U2Net demonstrates the sequential steps involved in image segmentation using a convolutional
neural network. The process begins by reshaping the input tensor to align with the desired dimensions. Next, features are
extracted through convolutional layers, incorporating batch normalization and ReLU activation, forming what is known as a
Resblock. To reduce the spatial resolution, max pooling is applied. The Decoder Layer then utilizes transpose convolutions
and skip connections to restore and preserve spatial information. Residual connections are employed to further enhance the
network’s performance. Finally, a 1x1 convolutional layer generates the segmentation mask, resulting in the final output.

TABLE III: Comparative Evaluation of Phase Retrieval Methods: Performance, Complexity, and Processing Analysis

Method Image Size Processing Time Complexity Performance
SiSPRNet [37] 762x762 3.56 ms/Image High Medium
ResNet [38] 762x762 - High Good
PhysnNet [5] 440x440 10 min Medium Good
UNet (GS) 440x440 500-700 ms Medium Low
Res-U2Net (FR) 440x440 500-800 ms High Good
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(a) (b) (c)

Fig. 3: Example of 3D Phase Retrieval image diffraction with
a distance of 27.75 mm and a wavelength of 632.8 nm: (a)
2D Raw image, (b) 2D phase retrieval estimate, and (c) 3D
estimation of phase retrieval

neural networks against Gerchberg-Saxton (GS) and Fourier-
Rytov (FR) methods. Results highlight the significant advance-
ments achieved by UNet and Res-U2Net in both 2D and 3D
reconstructions. The proposed phase model’s excellence is
particularly evident in 2D images, assessed through NR-IAQ
for distortion (BRISQUE), texture, and sharpness. Findings
demonstrate the model’s superiority with minimal distortion
levels, especially in background details (Table I). Notably, Res-
U2Net exhibits superior performance, showcasing reduced dis-
tortion (Fig. 5d). Metrics unequivocally establish Res-U2Net’s
supremacy over UNet. For 3D mesh normalized test images,
UNet excels in mean squared error (MSE) and symmetry,
while Res-U2Net shows promise in both aspects. The study
concludes that combining neural and physics-based models ef-
fectively addresses 3D phase retrieval, catering to application-
specific needs (Table III). Remarkably, Res-U2Net achieves
this with a processing time of around 800 ms. Future work
should explore additional metrics and model enhancements.
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Fig. 4: The schematic diagram illustrates the phase retrieval experiment conducted using a laser with a wavelength of 632.8 nm.
The laser beam passes through a spatial filter and a lens to expand its size. The expanded beam then illuminates the object,
allowing us to capture the diffracted image using a sensor camera with a pixel size of 4.8 µm.
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(d)

(e)

Fig. 5: The image diffraction distances for 2D/3D Phase Re-
trieval are 34.36 mm, 34.66 mm, and 37.15 mm, respectively,
with a wavelength of 632.8 nm. The following components are
involved: (a) a test figure, (b-d) 2D phase retrieval estimate
using UNet and Res-U2Net, and (c-e) 3D estimation phase
retrieval using UNet and Res-U2Net.
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