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Abstract—One of the most recent applications of compressive
sensing is single-pixel cameras, where an image is generated by
a reduced set of measurements. This new type of camera has
already been implemented in many ways but always relying on
a powerful CPU or GPU to run the reconstruction algorithms,
limiting the portability and increasing the power consumption
of the entire system. In this work, a well-known compressive
sensing algorithm called TVAL3 is implemented in a Xilinx SoC
embedded device. This algorithm has been used in multiples
works of compressive sensing for single-pixel cameras due to
its image reconstruction performance. The used device is a
Zynq-7000 SoC that has an ARM CPU and allows hardware
acceleration via FPGA. The hardware accelerator allows speed
up the most time-consuming part of the algorithms to contrast
the retard caused by the low-spec CPU. The proposed FPGA
accelerator implementation was compared with the CPU-only
version as regards quality reconstruction and speed. The results
show a nearly 10x improvement in the consumption time and
a no reduction in the quality of the reconstructions. The new
implementation can be used to the initial phase of new, more
portable, and faster single-pixel cameras.

I. INTRODUCTION

Without any doubt, compressive sensing is and will remain
a crucial technique with many applications. The reconstruc-
tion of a signal with a reduced number of samples brings
new possibilities and also new problems. One of these new
applications to compressive sensing theory is the single-pixel
cameras [1]. These cameras use a single sensor to collect
the reflected intensities of the scene after the projection of
multiples patterns. These projections can be done using light
sources with wavelengths different than the visible spectrum,
like the near-infrared. This allows hyperspectral cameras,
useful in applications like gas leakage detection [2]. Another
important feature of single-pixel cameras is the ability to use
the time-of-flight of the signals projected to estimate the deep
of the objects on the scene, and build 3D images [3].

The single-pixel cameras use compressive sensing to reduce
the number of patterns needed to reconstruct the signal. For
example, a single pixel non-compressive-sensing approach that

wants to produce a 64x64 image must generate and project
4096 orthogonal-based patterns. In addition, to collect and
store the 4096 reflected intensities. These processes require
a lot of time and effort, making single-pixel cameras less
competitive against the traditional ones. With compressive
sensing, this number of patterns is reduced drastically to fewer
measurements than the Nyquist limit.

The field of single-pixel image reconstruction algorithms is
constantly changing, with new algorithms increasingly focused
on reducing computational cost and obtaining better quality
reconstructions. Candès and Tao [4], [5] proposed some of
the earliest work in this area, suggesting l1-minimization
to recover a sparse signal. l1-magic [6] and basis pursuit
denoising (BPDN) [7] are algorithms that apply this l1-
minimization. Other important kinds of algorithms are known
as greedy algorithms, which iteratively attempt to find the
local optimum at each stage by the signal decomposition into
a linear combination of waveforms. In compressive sensing,
Iterative Hard Thresholding (IHT) [8], Orthogonal Matching
Pursuit (OMP) [9], and Compressive Sampling Matching
Pursuit (CoSaMP) [10] are the most used greedy algorithms.
The third category of algorithms commonly groups the total
variation (TV) regularization algorithm. TV regularization set
that the image gradient is sparse and try to recover the image
from this convex problem. TV minimization by Augmented
Lagrangian and ALternating direction ALgorithms (TVAL3)
[12] and NESTA [13] are the commonly used algorithm
for single-pixel that use TV minimization. Despite the large
number of algorithms applied to single-pixel cameras, we will
focus on TVAL3 because of its good performance [11].

Almost all the previous works in single-pixel imaging use
a CPU or GPU station to reconstruct the image, limiting
the overall speed to the network bandwidth. In complex
systems where not just images are processes, the speed of the
connections becomes the main bottleneck. An example of such
a system is autonomous vehicles, in which 1 gigabyte of data
is generated every second and requires real-time processing to
make correct decisions [14]. This problem finds a solution
in edge computing that enables the system to process the978-1-6654-0029-9/21/$31.00 ©2021 IEEE



data at the network’s edges, avoiding data movement. The
main objective of this work is to provide an edge computing
implementation of the TVAL3 algorithm that allows fast and
portable cameras.

To implement the algorithm, we use a Zynq-7000 SoC as the
development platform along with the accelerator kernel flow
from Vitis. With our implementation, we obtain a 10x speedup
in the reconstruction time for different image sizes and differ-
ent compression ratios compared with the ARM-CPU version.
Also, we evaluate the use of fixed-point arithmetic and find an
almost 20 dB decrease in the peak signal-to-noise ratio (PSNR)
when using this data type. To the best of our knowledge, this is
the first attempt to implement a compressive-sensing algorithm
focused on single-pixel cameras on an FPGA or even on an
embedded platform. Although the results are far from real-
time requirements, we hope to open up the opportunity for
new designs focused on more portable and speed single-pixel
cameras.

Section II, survey the TVAL3 algorithm, focused only on the
most common version of it. Section III outlines our methods
for deploy the algorithm in the embedded platform and how we
implemented the accelerator. Section IV presents the relevant
findings of the research.

II. TVAL3 ALGORITHM

The TVAL3 was proposed by Li in [12], as a combination
of classical optimization methods applied to a total variation
regularization problem in image reconstruction. In this section,
we introduce the algorithm to set the basis of our work. First,
the problem to solve is the total variation regularization applied
to compressed sensing:

min
u

=
∑
i

‖Diu‖, s.t. Au = b, (1)

or with an extra auxiliary variable,

min
u

=
∑
i

‖wi‖, s.t. Au = b and Diu = wi, (2)

where u is the image to reconstruct, Diu the discrete gradient
of u at pixel i, A the measurement matrix, b the measure. To
solve (1) Li in [12] proposes an algorithm that applied the
alternating direction method to minimized their augmented
Lagrangian function. The augmented Lagrangian function
redefines the original constrained problem to a sequence of
unconstrained subproblems. Applied to (2) the augmented
Lagrangian is:

LA(wi, u) =
∑
i

(
‖wi‖ − νTi (Diu− wi) +

βi
2
‖Diu− wi‖22

)
− λT (Au− b) + µ

2
‖Au− b‖22

(3)

where ν and λ are the Lagrangian multipliers that must be
updated in each iteration, and β and µ are the penalties that
also must be re-computed after each iteration. To minimize this
new function Li applied the alternating direction method [15]
to separate the problem into two sub-problems: u minimization
and w minimization.

A. w minimization: Shrinkage-like Formulas

The minimization of w begin with the definition of the w-
subproblem from the original augmented Lagrangian:

min
wi

∑
i

(
‖wi‖1 − νTi (Diuk − wi) +

βi
2
‖Diuk − wi‖22

)
(4)

where k denotes the index of the k-iteration for the inner iter-
ation loop. To solve this problem the original work proposes
a shrinkage-like formula:

wi,k+1 = max

{∣∣∣∣Diuk −
νi
βi

∣∣∣∣− 1

βi
, 0

}
sgn

(
Diuk −

ν

β

)
.

(5)

B. u minimization: One-step Steepest Descent

After computing wi,k+1, is possible to compute uk+1 using
the one-step steepest descent scheme. Like before first the
authors define u-subproblem

min
u

∑
i

(
−νTi (Diu− wi,k+1) +

βi
2
‖Diu− wi,k+1‖22

)
− λT (Au− b) + µ

2
‖Au− b‖22,

(6)

and then to apply the steepest descent scheme, they compute
the gradient of the above expression

dk(u) =
∑
i

(
βiD

T
i (−Diu− wi,k+1)−DT

i νi
)

+ µAT (Au− b)−ATλ.

(7)

Finally, to accelerate the process, TVAL3 only computes one
step of the steepest descent scheme, so it is necessary to define
an aggressive step length. To achieve this the author uses the
Barzilai-Borwein method [16]

αk =
sTk sk
sTk yk

, (8)

where sk = uk−uk−1 and yk = dk(uk)−dk(uk−1), followed
by the non-monotone line search method proposed by Zhang
and Hager in [17]. Algorithm 1 is an overview of the complete
TVAL3 build by Li.

III. SOC IMPLEMENTATION

A. Platform

Before starting with the description of the accelerator, we
will describe the platform that we use to justify some of the
software decisions. The accelerator was implemented on the
MicroZed®-7010 board, a device based on the Xilinx Zynq-
7000 SoC. This SoC combines dual-core ARM Cortex-A9
processors with 28nm Artix-7 based programmable logic. To
facilitate the deployment, we used the VitisTM acceleration
kernel flow. We started by designing the software platform,
as it is not officially supported. The platform runs Linux and
uses the OpenCLTM API and the Linux-based Xilinx Runtime
(XRT) to schedule kernels and control data movement.

In table I, we present the total amount of resources used to
the platform, these resources are used to define the interfaces



Algorithm 1: TVAL3 Algorithm (Adapted of [12])

Initialize ν0i , β
0
i , λ

0, µ0, and starting points w0
i , u

0 for
all i;

while outer stopping criteria unsatisfied do
Set wk+1

i,0 = wk and uk+1
0 = uk;

Initialize 0 < δ, ρ, η < 1;
Set Q0 = 1 and C0 = LA(wi,0, u0);
while inner stopping criteria unsatisfied do

Compute wi,j+1 based on shrinkage-like
formula;

Set αj through BB-like formula;
while nonmonotone Armijo condition

unsatisfied do
Backtrack αj = ραj ;

Compute uj+1 by one-step steepest descent
method;

Set Cj+1;

Update multipliers
(
νk+1
i , λk+1

)
;

Choose new penalty parameters βk+1
i ≥ βk

i and
µk+1 ≥ µk;

return u;
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Fig. 1. The general structure of the platform. The upper piece, the PS,
represents the blocks inside the processing system part. The PL bottom section
represents the internal block of the FPGA.

that handle different types of requests by the host. The last
row in the table indicates the number of resources available
for implementing the kernels. Figure 1 represents the general
structure of the platform. The processing system (PS) uses
general-purpose AXI ports to control the execution and data
transfers of the Programmable Logic (PL) side. The FPGA
uses high-performance (HP) ports to transfer data to the ex-
ternal memory. On the MicroZed board, this external memory
is a 1 GB DDR3 memory.

B. Kernels

As discussed in the previous section, the TVAL3 algorithm
solves the compressive sensing problem by the Alternating
Direction Algorithm of the Lagrangian. This alternating di-

TABLE I
RESOURCE CONSUMPTION OF MICROZED PLATFORM. THE USER BUDGET

IS THE REMAINING NUMBER OF RESOURCES AVAILABLE FOR THE
ACCELERATOR CORES.

LUT LUTAsMem REG
BRAM
(36Kb)

DSP

Total 6929 899 9958 13 0

Available 17600 6000 35200 60 80

Utilization (%) 39.3 14.9 28.3 21.7 0.0

User Budget 10671 5101 25242 47 80

rection algorithm split the Lagrangian problem into two new
subproblems, resolved by the steepest descent method and
shrinkage-like formulas.

These two subproblems include the computation of finite
differences, vector scaling, and matrix-vector multiplications.
Since the latter operation is the most computationally expen-
sive, its acceleration will dominate the performance improve-
ment.

We use C++ to write the two kernel codes for the two
matrix-vector operations. The code for one kernel is provided
in listing 1, the other kernel has a similar structure. We select
C++ mainly to provide a scalable implementation that can be
reconfigured to any size of the operands and is capable of
being deployed on any Vitis platform. The two inputs and the
output are transferred over two separate High Performance
(HP) AXI ports to the global memory. In the matrix-vector
product, the matrix was arranged in column-major order,
allowed us to avoid dependencies in the accumulator and
achieve an initiation interval (II) of 1. Also, we employed
dataflow optimization to improve the kernel performance by
task-level parallelism. The kernels then executes three tasks
(read, compute and write) in a dataflow pipelining way.
The design uses first-in-first-out (FIFO) memory as a data
transferring channel between each of the tasks.

Listing 1
MATRIX-VECTOR MULTIPLICATION HLS CODE

f o r ( i n t j = 0 ; j < FEATURES ; j ++) {
f l o a t b = b b u f f e r [ j ] ;
f o r ( i n t i = 0 ; i < MEASURES; i ++) {

# pragma HLS PIPELINE I I =1
A stream >> a ;
f l o a t p rev = ( j ==0) ? 0 : c b u f f e r [ i ] ;
c b u f f e r [ i ] = p rev + ( b * a ) ;

}
}

Figure 2 shows the kernel organization with the main blocks
of the computing task. We use internal BRAM to implement
the accumulator (N) and a temporal array that stores the
input vector (M). In 32-bit float-point precision, the adder
and the multiplier used a total of 5 DSP48E modules. The
latency in cycles of the module (thanks to the previously
mentioned optimizations) is nearly the value of elements on
the matrix. In the next section, we evaluate the performance of
our implementation by comparison against a full CPU version
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Fig. 2. Proposed structure for matrix-vector kernel implementation. The gray
cylinders represent the FIFO connections inside the dataflow optimization.

that also runs on the MicroZed board but does not use the
FPGA.

IV. RESULTS

To measure the performance of our design, we test the
TVAL3 algorithm with and without the accelerator in three
different scenarios: First, we wanted to evaluate the changes
in resource consumption and runtime for three data accuracies
and use these results to select the best accuracy. Then, with this
accuracy, we evaluated the performance by setting the image
size to 64x64 pixels and reconstructing it with five different
compression levels. Finally, we set the compression level to
70% and changed the image size. All the experiments run
on the same board and try to reconstruct the phantom image
(Figure 3a) with the same TVAL3 parameters.

Table II shows the performance of three implementations
varying the data type. The time spends in all the implemen-
tation is almost the same, but the PSNR of the reconstruction
has a significant decrease when uses the fixed-point data type.
This decrease is meaningful when we look at the consumption
resources. Since in 4 resources categories, the fixed-point
implementation has less consumption, these decreases are
not above 2.5%. Meanwhile, the LUT amount increase by
more than 20.00 %. These results show that a fixed point
implementation does not improve the performance of the
accelerator and the use of float arithmetic is most justified.

Then, we test the time performance of the accelerator over
multiple compression rates. Figure 4 illustrates the results
compared with the full CPU version, showing that the hard-
ware accelerator implementation improves the time in all the
compression rates in at least one magnitude order. In terms
of image quality, the full CPU and the hardware accelerator
implementations present the same results. It is relevant to note
that the last two compression levels (75 and 70) finish the
algorithm by the tolerance error limit, while the other stop by
the max iteration criteria. Figure 3 also illustrates a quality
example of the reconstruction using different compression
rates.

TABLE II
RESOURCE CONSUMPTION AND PERFORMANCE OF THREE TVAL3

IMPLEMENTATIONS, WITH DIFFERENT DATA TYPES. THE PERCENTAGE OF
THE RESOURCE CONSUMPTION IS CALCULATED RELATIVE TO THE

PLATFORM USER’S BUDGET AND NOT ON THE FULL NUMBER OF SOC
ELEMENTS.

32-Float Q9.32 Q8.27

Latency 1 4199454 4199456 4199453
Latency 2 4199454 4199456 4199453
Fmax (MHz) 136.99 136.99 136.99
Reconst Time (s) 35.35 35.38 32.51
PSNR (dB) 55.9 41.5 31.9

LUT 3739 [35.04%] 6633 [62.16%] 6198 [58.08%]
LUTAsMem 432 [8.47%] 440 [8.63%] 410 [8.04%]
REG 5718 [22.65%] 6830 [27.06%] 6366 [25.22%]
BRAM 12 [25.53%] 12 [25.53%] 10 [21.28%]
DSP 10 [12.50%] 8 [10.00%] 8 [10.00%]

Finally, we evaluated the implementation at three different
image sizes, 16x16, 32x32, and 64x64, all with a compression
level of 70%. Figure 5 shows the results also compared to the
CPU version. The findings confirm the improvement of the
FPGA version over the CPU version, even at small image
sizes.

V. CONCLUSION

Compressive sensing algorithms for a new application like
single-pixel cameras represent a rich field for embedded de-
velopment. It was found that a small system can run complex
reconstruction algorithms and improve the time performance
by hardware acceleration. Also, the fixed-point implementation
shows no improvement over the floating arithmetics and a
decrease in the quality reconstruction. These last results can be
overcome in future works by using some artifact that compen-
sates for the precision issues. Our findings could be applied
to other FPGA+CPU systems, providing better results, and
further improving the single-pixel field in terms of portability,
power consumption, and runtime.
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