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Abstract— In this paper, a theoretical analysis of a vision 
system for 2D/3D single-pixel imaging using principles of 
compressed sensing and Indirect-Time-of-flight measurements 
is presented. The goal is to use this system for autonomous 
drone navigation in environments with adverse conditions 
where typical sensors used by RGB or RGB-Depth cameras 
typically fail. The harsh environments considered include 
smoke, rain, or fog. The performance evaluation is based on 
the signal-to-noise ratio considering different levels of 
background illumination, measured depths oscillating between 
1 m and 10 m, different percentages of object reflectivity, and 
finally, the achievable spatial resolution understood as the 
standard deviation of the distance measured for a particular 
object in the illuminated scene under a set of defined border 
conditions. For the vision system proposed, we consider active 
illumination consisting of an array of NIR LEDs emitting 
Hadamard illumination patterns, and a pulsed laser diode used 
for Indirect-Time-of-flight. We propose using an InGaAs NIR 
sensitive photodiode as a single-pixel detector. Since the 
proposed vision system will be mounted on a drone, 
parameters such as weight, dimensions, power consumption, 
and processing time were considered to maximize its efficiency. 
 
Keywords—Single-pixel imaging (SPI), time-of-flight (TOF), 
InGaAs, 2D/3D Imaging, CUDA, GPU, Orthogonal Matching 
Pursuit (OMP), compressed sensing, Hadamard patterns 
 

I. INTRODUCTION  
 Commercial CMOS vision systems, besides offering a 
vast amount of signal processing systems and analog-to-
digital converters (ADC) on-a-chip, they are very reliable, 
reasonably cheap, and compact. However, these systems 
exhibit several limitations if applied in Time-of-Flight 
(TOF) 3D imaging and ranging applications. For instance, 
the systems based on silicon solutions continuously have to 
deal with very high background photon shot noise, mostly if 
used outdoors. Also, due to the silicon radiation bandwidth 
normally ranging between 400 nm and 1000 nm (ultra-violet 
(UV), visible (VIS), and near-infrared (NIR) parts of the 

spectra) at the most; exactly the main emission bandwidth of 
the Sun at ground level, and also the bandwidth where the 
maximum allowed the light intensity of the active 
illumination source required for TOF principle-based 
systems is mostly diminished due to the international IEC 
Eye Safety regulation IEC62471 for Class 3R lasers [1]. 
Besides, conventional RGB or RGB-depth sensors are 
limited under low visibility conditions, such as in the rain, 
fog, smoke, or snow-impregnated scenarios that hinder the 
image acquisition or estimate the distance between the 
camera system and the different objects in the illuminated 
scene. For drone applications, depth information has been 
proven relevant in autonomous navigation applications [2]. 
Nevertheless, such sensing limitations prohibit the 
deployment of drones in scenarios with adverse conditions 
mentioned. 
 
 Motivated by the above, we propose a vision system that 
can operate under extreme background illuminations 
working conditions. For this, we propose using a vision 
system working at longer wavelengths than those achievable 
by silicon-based systems. The latter enables taking 
advantage of the bandwidth window yielding much higher 
atmospheric absorption and thus much lower background 
illumination, using active illumination sources with higher 
irradiances allowed by the ESR, and the fact that using 
longer NIR wavelengths diminishes Rayleigh and other 
scattering mechanisms. Thus enables propagation of active 
illumination in the rain, smoke, fog, or snow. As there are 
no image sensors fabricated with InGaAs, sensitive to 
emitted radiation in the range around 1550 nm can allow the 
TOF sensor functionality commonly pursued in CMOS 
based solutions. We propose using commercially available 
single InGaAs photodiodes accompanied by the SPI 
principle of operation to generate 3D images at near video 
rates. For the latter, we present a mathematical model that 
considers different photon and electrical noise sources of the 
proposed system, a maximum 



 

 

100 Klux background light intensity, and consider three 
different sets of goal parameters: i) distance of objects in the 
illuminated scene varying between 1 m and 10 m; ii) 
different reflectivity indexes of the objects evaluated in the 
illuminated scene, and iii) spatial resolution, i.e., the 
standard deviation of the evaluated distances between the 
different objects in the illuminated scene and the vision 
system proposed, calculated considering the time that the 
emitted light pulse requires to reach the different objects in 
the scene, be reflected by them, and travel back to the 
detector system allocated aside the active illumination 
source. Thus, we propose a vision single-pixel imaging [1] 
system working in combination with the principle of 
Indirect-Time-of-flight (iToF) [3, 4, 5]. We are confident 
that this vision system has the potential to be exploited in 
drone applications involving autonomous navigation. 
 
 For evaluating the proposed vision system, we defined a 
methodology for testing the devices and the implemented 
algorithms in the vision system at near video rate, and the 
generation of 2D and 3D images. The first analysis makes a 
comparative study considering the InGaAs Thorlab FGA015 
diode. For this work, we have focused on determining the 
minimum integration time of the diode to capture an image 
under different noise conditions and different object 
reflection coefficients at different distances. This parameter 
is decisive for calculating the video frame rate performance, 
measured in frames per second (fps). The second analysis is 
related to the required processing time of the single-pixel 
generated signals enabling the creation of 2D images. 
Because the image generation system operates using the 
single-pixel principle, we use the OMP algorithm [15] to 
recover and reconstruct 2D images. For the implementation 
of the OMP algorithm, an initial analysis is carried out to 
determine the minimum amount of patterns used to generate 
grayscale images with a compression factor of 2% for 
different resolutions (64x64, 64x16, 128x16, and 256x16 
“virtual” pixels). We assessed the OMP algorithm in two 
different architectures, namely CPU and GPU, to determine 
the image processing time. The previously described 
analysis enables us to calculate the frame rate (fps) of two 
different generated images' resolutions. A third analysis is 
related to the implementation of the TOF system for the 
generation of 3D images. This process will operate in 
parallel to the image capturing process. We consider the 
implementation of the continuous wave (CW) ITOF [6] and 
IEC Eye Safety regulation IEC62471 standard applied to 
Class 3R lasers [1] to define the required performance 
specifications of the photodetector at the level of distance 
measurement accuracy. The latter analysis defines the 
expected spatial resolution under different noise levels and 
different reflection coefficients of the target materials.      
 

II. MODELLING OF THE  SPI-ITOF VISION SYSTEM 

PROPOSED 
Since the vision system proposed is spi-based [7], we 

provide a brief description of the sensing approach's main 
concepts. Sequences of structured light (for example, 
Hadamard patterns [7]) are projected over the object, and 
the reflected light is focused onto a photodetector with no 

spatial information. The object is reconstructed from the 
photodetector's electrical output signal using the OMP 
algorithm [15] to recover the 2d image.  

 
       As a first step, we select the most suitable photodetector 
for intensity measurements. We chose a nir-sensitive 
photodetector (1544< λ<1556 nm) to reduce the background 
light illumination since the sun’s spectral radiation content 
is small in this range. Regarding the properties of the objects 
embedded in the illuminated scene, we assume the usual 
lambert reflection model shown in fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Scheme of measurement of energy level detected, the source of 
noise from the background lighting, distance, stages of the optical system 
are considered. 
 
A key factor here is the assessment of the minimum 
integration time required by the chosen photodiode under 
different working conditions, i.e., the time required to 
capture the photons emitted by the array of LEDs that get 
reflected by the objects in the scene, and finally reach the 
photodiode and provide an electrical signal above the 
background noise. For the determination of the integration 
time, we use (1), which models the number of photons 
arriving at the single-pixel [8]. Considering the use of a 
band-pass filter in front of the chosen photodiode, (1) 
depends on the spectral content 1544 nm < λ < 1556 nm, the 
detector quantum efficiency QE (ߣ) in this bandwidth, the 
length of the integration time of the detector Tint, and pixel´s 
effective photosensitive area Apix, defined as Awxl FF, where 
Awxl is the semiconductor window and FF the photodiode´s 
fill-factor (FF). The number of photons E(N) impinging the 
photodetector photoactive will depend on the irradiance of 
the active light source (the array of chosen LEDs) and the 
ambient light conditions, as well as on the distance of the 
object to be detected and the optical parameters that define 
its reflective surface (see Fig. 1). In (1), the parameter ࢶeߣ is 
defined as the irradiation level of the active source, 
Eeߣ_sun(ߣ) irradiation level of the sun illumination considered 
to be of 100 klux, the f# number f#=ffoc/daperture  is the focal 
distance/opening distance, h is Planck's constant= 
6.62607004x10-34 m2 kg/s, z is the measured distance, c is 
speed of light constant, τ the lens transmittance, ρ the 
material reflection index, and ᅇFOV the focal aperture angle 
[6] of the emitting LED array. Table 1 summarizes the 
values of the different quantities considered for simulation 
purposes. 
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TABLE I 
PARAMETER EVALUATION OF InGaAs DIODE 

Parameter 
InGaAs diode Thorlab  

FGA015 

Windows Pixel 
Area 
mm2 

0.0707  

Power Source 
radiation 

 (Leds NIR) 

25.6 W 

Distance range 10 m 

Reflectance 
range [0.2 0.5 0.8] 

Background illuminance 100 klux 

Optical bandpass 
filter 1544 nm - 1556 nm 

Total 
transmittance of 

optics 
0.9 

Field of view 20° 

f-number 0.95 

Fill Factor (FF) 35 % 

 
After the algorithm was defined before was applied, the 

evaluation of InGaAs diode Thorlab FGA015 [13] using the 
parameters defined in Table I was performed. We made 
sweeping of the integration time starting from an initial time 
off to reach the maximum distance for which the InGaAs 
diode FGA015 is not affected by the noise floor, see Fig. 2. 

 
Calculate time integration: 
In order to calculate the minimum integration time required 
to detect each of the emitted Hadamard patterns properly, 
the analysis procedure is as follows: 
 

1. Take the initial parameters of the optical system, as 
listed in Table 1. 

2. 2. Calculate the number of overall number of 
photons E(N) impinging the photodetector 
photoactive area using (1) and considering 
background illumination in the wavelength range 
defined by the narrow band-pass filter added to the 
used active illumination. 

3. Calculate the overall electrical noise floor in terms 
of the variance σNoise_floor calculated as the square-
root of the sum of squares of the background 
illumination photon shot noise variance σph, the 
variance representing the statistical variation in the 
amount of thermally generated electrons within the 
InGaAs photodetector or the dark shot noise σdark, 
and the read-noise σread generated by the readout 
electronics, as expressed by (2). 

 
                 2 2 2

_Noise floor ph dark read     
  (2) 

 
4. Define the maximum distance reached Zmeasurement 

for the minimum level condition where the E(N) is 
affected for the noise. 
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5. If Zmeasurement<Zmax for a reflection index ρ the 

integrate time Tint is increased the skip to step 3. If 
Zmeasurement≈ Zmax then Tinti=Tinti-1 condition of the 
stop. 
 

 
  
 
 

 
 
 
 
 
 

 

 

 

Fig. 2. Behavior of the Thorlabs FGA015 InGaAs photodiode in function 
of numbers photons detected, and the noise floor, for the integration time 
proposed, considering different reflection indices and the distances 
measured. 

A. Processing algorithm  implemented to  SPI 
reconstruction  
 

Single image processing time is a critical factor for the 
generation of 2D digital images and video streams in SPI for 
application in real-time eg. Drone navigation. To reduce the 
time required by the 2D image processing system, we 
determinated the minimum number of illumination patterns 
equivalent to a compression factor of 2% to be able to adapt 
the Batch-OMP algorithm [8] based on hardware 
architecture and a GPU. The Batch-OMP algorithm [8], in 
comparison with another compressing sensing (CS) 
algorithm as OMP and Cholesky-OMP, presents 
improvement in processing time due to that don't make 

 



 

 

operations of the inverse matrix, on the contrary, is used the 
definition of the Gram-matrix, G = ΦTΦ, where initially is 
needed to make a pre-calculated Gram-matrix G with an 
initial projection i ,where an initial projection as p0=ΦTy is 
defined this allows finding the new atom Φ:i, that will be 
used as stop criterial for the system solution calculation.  
 
Algorithm 1: Batch-OMP algorithm [15] 
Batch OMP algorithm input data: Dictionary , input 
signal y, target sparsity K 
Batch OMP algorithm output data: sparse representation x 
that fulfills the relation y ≈ x 

 
Detailed algorithm sequence: 
 
1: set I = {0}, L = [1], p0 = Ty, ε = y·yT, i = 1, G = T  
2: p = p0  # Initial projection 
3: while (εi-1 > ε) do 
4         k = arg maxk ǀpǀ# Finding the new atom : i 
5:               if  i>1 then # Cholesky update 
6:                     w = Solve for w {Li-1w = Gi-1, k} 
7:               
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# Update of the Cholesky decomposition      

8:            end if 
9:        I = (I, k)  # Support update 
10:      xi = Solve for c {LLT xi = p0} 
11:      = Gxi # Matrix-sparse-vector product for each path 
12:     p = p0 - 
13:     k = xT # Calculate error 
14:k = k-1 - k + k-1 # Calculate normal error   
15:end while 
 

For the implementation of the Batch-OMP algorithm we 
defined 4 kernels that must operate in parallel [9-10-15]: 

i. In the first kernel, the input information is defined, 
the Gram-matrix (G = ΦTΦ) is generated (line 1 of the 
Algorithm 1: Batch-OMP algorithm), and the residual norm 
r is calculated. 

ii. The second kernel was used to calculate the new 
atom :i  (line 4 of the Algorithm 1: Batch-OMP algorithm) 

iii. The third kernel was used to calculate the Cholesky 
decomposition (lines 6 and 7 of the Algorithm 1: Batch-
OMP algorithm), where the matrix N×N was defined to 
calculate the matrix L (see (3) [11]). 
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                                 (3) 

iv. The fourth kernel was used to calculate the matrix 
space-vector product (line 11 of the Algorithm 1: Batch-
OMP algorithm), and also to calculate the normal error e 
(line 14 of the Algorithm 1: Batch-OMP algorithm [15]). 

B. Image processing time analysis 

We implemented the Batch algorithm (see algorithm 1) 
as much in GPU Jetson nano as CPU i5, and we compared 

the processing time for a different image size of 64×64, 
64×16, 128×16, and 256×16 and calculated the frame rate, 
see figure 3. 

In the test, we can determine that the Batch-OMP 
algorithm implemented on the GPU platform ran 2.7 times 
faster than when it was implemented using the CPU based 
platform. This will be a factor determination for applications 
in real-time. The processing time would be between 20 to 30 
ms with which we can have a video frame rate of the 24 fps.  
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                                                           (b) 

Fig. 3. Performance evaluation results obtained for the Standard-OMP and 
Batch-OMP algorithms, respectively, running on the i5 CPU and the Jetson 
Nano GPU [10] platforms: (a) image reconstruction time required for the 
sparsity factor k = 16; b) frames per second (fps) obtained for the results 
shown in a). 

An example of a reconstructed image using the Batch-
OMP algorithm with a size of 64×64 virtual pixels is shown 
in Fig. 4. The original image is shown in Fig. 4(a), in Fig. 
4(b) reconstructed image with a sparsity value of k = 16 
with a PSNR level of ~ 24 dB. 

 

 

 

 

(a)                                                     (b) 

Fig. 4. An example of a reconstructed image with a size of 64×64 virtual 
pixels, reconstructed using the Batch-OMP algorithm running on the GPU 
platform: (a) original image deconstructed down to a size of 64×64 pixels; 
(b) reconstructed image with a sparsity value of k = 16. 

 



 

 

C. Evaluation of indirect time-of-flight (iToF) 
measurement methods 

 
As the 3D image reconstruction method, we use the 
reference distance measurement following the continuous-
wave principle of time of flight indirect (CW-iToF [2-3]). 
The proposed approach estimates the depth of objects and 
scenarios using the reference distance as a complement of 
the shape-from-shading (SFS) [12], which will be used for 
estimate depth in the image 2D by single-pixel and generate 
the image 3D. To determinate the maximum measuring 
ranges with a spatial resolution below 1 cm. We evaluated 
the resolution capacity of the CW-iToF method over 
conditions of outdoors background illumination intensity 
ranging between 50 and 100 Klux on the one hand and on 
the other hand, indoor conditions with background 
illumination between 15 and 30 Klux. In the evaluation, we 
considered the reflectivity coefficient of the object in the 
illuminated scene to be 0.2, 0.5, and 0.8, respectively, for a 
system using 1,000-period continuous-wave NIR LED 
illumination at first and then expanding the number of 
accumulations (and improving the signal averaging feature) 
to 10,000 signal periods. The minimum amount of 
accumulations required is defined by the target spatial 
resolution of the system, the background illumination 
photon shot-noise, the distance of the target objects to the 
photodetector, and the reflection index of the materials 
covering these objects. To calculate the achieved spatial 
resolution, i.e., the standard deviation σCW-iToF of the 
measured distance using the iToF method, we use (4) [6]. 
Where dmax corresponds to the maximum measurement 
distance, AR corresponds to the number of photons detected 
in the detector window, B corresponds to background noise, 
where x=TTAP/ Tp is a scaling factor that depends on the 
pulsed time Tp and sample time TTAP.  

 
max 2 1

2
R

CW iToF
R acc

d A B
A N F x







                       (4) 

The results obtained from the evaluation of the indirect 
distance estimation method are shown in Fig. 5. For the 
maximum measured distance (in meters) with a standard 
deviation (spatial resolution) of below 1 cm, estimated 
under different operating conditions. For the underwent 
evaluation, we considered the Thorlabs FGA015 InGaAs 
photodiode [13] over different conditions of the illumination 
in outdoor as for indoor considering different reflection 
indexes for the case of 10,000 (see Fig. 5(a)) and 1,000 (see 
Fig. 5(b)) period accumulations using a laser Thorlabs 
L1550P5DFB [14] with a pulse of a 65 ns in the wavelength 
of 1550 nm. 

To determine maximum measurement distance with a 
resolution of below 10 mm, we modeling under indoor 
illumination conditions, using as elements photodetector the 
InGaAs diode Thorlab FGA015 [13], which enables 
measuring distances of between 0.8 and 4.3 m and under 
outdoor background illumination conditions, the measured 
distance range achieving spatial resolutions of below 1 cm 
was of between 0.3 and 1.5 m. 

 
 
 

 
 

 
 
 
 

 

                            (a)                                                           (b) 

Fig.5. Maximum distance resolution (standard deviation in distance 
measurements) achieved using the CW-iToF method considering different 
reflection indices blue 0.2=ߩ, red 0.4=ߩ and yellow 0.8=ߩ of the objects 
and the Thorlabs FGA015 InGaAs photodiode [9] for (a) 10,000 
illumination CW period accumulations and different background 
illumination levels, and (b) 1,000 illumination CW period accumulations 
and the same different background illumination levels. 

III. PROPOSED SPI-ITOF VISION SYSTEM 

          Based on the analysis described in the previous 
section, we proposed a vision system for the generation of 
2D / 3D and video images, shown in Fig. 6a and 6b. Three 
stages form this vision system: the first stage combines the 
lighting system active formed by an array of LEDs NIR in 
the wavelength of 1550 nm and projecting the pattern light 
over the object. The reflected light is catching for the 
photodetector module, which has an InGaAs photodiode 
Thorlab FGA015 [13], fig 7a. The second stage is the 
responsibility of processing the signal captured by the 
photodiode module through the use of an ADC, which is 
controlled by the GPU unit. The GPU unit is also 
responsible for a generation of the sequence of the 
Hadamard patterns, as well as the processing of converted 
data by the ADC, that will be used by the Batch-OMP 
algorithm running in the GPU unit to generate the 2D 
image. The third stage is responsible for generating the 3D 
image for which is need the combine the lasers pulsed array 
L1550P5DFB @1550 nm [14], disposed of at an angle of 90 
grads over the photodetector module. The signals lasers are 
generated using the driver laser that is controlled by the 
GPU unit. The signals of lasers are projected sequentially 
over the object that wants to generate a 3D image, and the 
reflected signals of the lasers are catching by the 
photodiode, which is located in the photodetector module, 
fig7b. The lasers light signals are processed by the ADC. 
The converted data is used to make an estimation of the 
phase and calculate the distance references that will be used 
in combination with a shape-from-shading algorithm [12] 
(SFS) in the GPU unit for generating the 3D images (see (5) 
[6]). 
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                  (a)                                                 (b) 
 
Fig.6. The proposed vision system dimension 11x12x13 cm , weight 1.3kg 
and power consumption 25W, a) front part elements module photodiode, 
focal lens with length focal 20 cm, Wi-Fi antenna, b)internal part elements 
GPU unit, ADC, active illumination source, photodiode driver 
,photodetector diode InGaAs. 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 

(b) 
Fig.7. Vision system operation, a) patterns  project Hadamard using the 
active illumination source LEDs-NIR and capture of the light reflected by 
the photodetector module, b) generation of the modulation signal of the 
laser and signal  reflect the laser, which will be sampling  to estimate the 
ᄰφ phase difference and calculate the reference the distance. 
 

IV. CONCLUSION  

 In this paper, we have presented a theoretical 
analysis of the design of an SPI-iTOF Vision System. For 
the analysis of the vision system, we have proposed a 
methodology divided into three stages. The first stage 
regarded the selection of components based on background 
noise and distance resolution conditions. In this assessment, 
we determined that it is possible to use the photodiode 
Thorlab FGA015 to capture images for distances between 
0.8 to 5 m , with a resolution of 1 cm, for objects with a 
refractive index of [0.2 0.5 0.8]. From this result, we are 
confident that the vision system has the potential to be 
exploited in drone applications in both indoor and outdoor 
environments. In the second stage, we implemented the 
Batch-OMP algorithm for 2D image generation, and we 
made the comparison of the processing time for CPU and 
GPU, the architectures with a sparsity k=16, and we got a 
reconstruction time between 20 and 30 ms, thus enabling a 
frame around 24 fps. In the third stage, we proposed 
implementing the method for generation imagen 3D that 
works in combination with the indirect-time-of-flight for 
calculating the reference of the distance used by the shape-

from-shading algorithm [12] (SFS) to the generation of 
image or map 3D. 
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