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ABSTRACT
Different imaging solutions have been proposed over the last few decades, aimed at three-dimensional (3D) space reconstruction and obstacle
detection, either based on stereo-vision principles using active pixel sensors operating in the visible part of the spectra or based on active
Near Infra-Red (NIR) illumination applying the time-of-flight principle, to mention just a few. If extremely low quantum efficiencies for NIR
active illumination yielded by silicon-based detector solutions are considered together with the huge photon noise levels produced by the
background illumination accompanied by Rayleigh scattering effects taking place in outdoor applications, the operating limitations of these
systems under harsh weather conditions, especially if relatively low-power active illumination is used, are evident. If longer wavelengths for
active illumination are applied to overcome these issues, indium gallium arsenide (InGaAs)-based photodetectors become the technology of
choice, and for low-cost solutions, using a single InGaAs photodetector or an InGaAs line-sensor becomes a promising choice. In this case,
the principles of Single-Pixel Imaging (SPI) and compressive sensing acquire a paramount importance. Thus, in this paper, we review and
compare the different SPI developments reported. We cover a variety of SPI system architectures, modulation methods, pattern generation
and reconstruction algorithms, embedded system approaches, and 2D/3D image reconstruction methods. In addition, we introduce a Near
Infra-Red Single-Pixel Imaging (NIR-SPI) sensor aimed at detecting static and dynamic objects under outdoor conditions for unmanned
aerial vehicle applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050358

I. INTRODUCTION

This work aims at presenting a concise review of the differ-
ent applications reported in the literature based on the single-pixel
imaging principle, which among other advantages could also enable
the use of single InGaAs-based photodetectors (or InGaAs line-
sensors) in low-cost Near Infra-Red Single-Pixel Imaging (NIR-SPI)
systems as the one proposed in this work. The latter is an alterna-
tive sensing paradigm for 2D/3D vision applications, which are nor-
mally based on stereo-vision principles using active pixel (RGB or
RGB-D) sensors operating in the visible (VIS) part of the spectra

(in the wavelength range between 450 and 750 nm) or apply the
time-of-flight (TOF) principle, as is the case in, e.g., Laser Imaging
Detection and Ranging (LIDAR) systems, which use active laser-
based pulsed illumination or LED-based continuous-wave illumina-
tion in the near infra-red (NIR) part of the spectra with 850 nm
or 905 nm wavelengths, to mention just a few. Silicon yields an
extremely low quantum efficiency (QE) in the NIR part of the spectra
(of below 10%) and completely vanishes beyond the 1107 nm wave-
length,1 which negatively affects its detection performance of the
NIR active illumination used. Unfortunately, silicon-based imagers
simultaneously excel at detecting background illumination (mostly
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in the visible part of the spectra), which produces huge amounts of
photon-shot-noise and gravely diminishes the systems’ ability to
detect emitted NIR laser pulses (or LED originated radiation) that
first need to reach the different objects in the scene in front of the
imaging system, then get reflected by them, and are finally detected
by using the image sensor placed alongside the active illumination
source. If micrometer-sized particles are present in the environment,
Rayleigh and other scattering effects take place that prevent the
emitted and reflected pulses from reaching the photosensor. There-
fore, in outdoor applications, the operating limitations of silicon
sensor-based systems under harsh weather conditions, especially if
relatively low-power active illumination is used (normally limited
by eye-safety regulations in the case of pulsed laser sources), are
quite obvious. If longer wavelengths (e.g., of 1550 nm) for the active
illumination in these systems are applied, InGaAs-based photode-
tectors, considering their high QE (>80%) in the wavelength range
between 900 and 1600 nm, become the technology of choice. If low-
cost solutions based on this approach are pursued, then using a
single InGaAs photodetector or an InGaAs line-sensor is the only
affordable choice, and the principles of Single-Pixel Imaging (SPI)
and Compressive Sensing (CS) acquire a paramount importance.
The latter has motivated us to present a review of the principles and
main techniques behind SPI systems, their evolution over time, and
their potential applications. We also introduce a new NIR-SPI device
oriented toward drone applications.

At first glance, having a single pixel may seem counterproduc-
tive as today’s cameras incorporate several million pixels at quite
acceptable costs. However, light sensors with a pixelated structure
are not always necessary, and the technology of the only pixel has
some advantages that stand out compared to cameras based on a
series of sensors (architecture of CCD or CMOS cameras1). First
of all, single-point detectors generally have high efficiency and can
detect weak changes in light intensity. Therefore, a single-pixel
image (SPI) has become a modern paradigm of image acquisition
through data compression. A single-pixel camera (SPC) architecture
consists of just two elements: a spatial light modulator and a single-
point detector. The key idea here is to modulate the observed image
with a specific pattern and collect the single detector’s corresponding
measurement. The desired image can be restored by post-processing
a sequence of measurements made with various patterns.

The first SPI concept was originated from the idea of modu-
lating a light field and collecting this modulated light by using a
single photodetector. This concept was documented in 1982 by Ben-
Yosef and Sirat,2 a work in which the authors proposed using the
elastic piezoelectric optical effect taking place in crystals for light
modulation, forcing the light output to remain proportional to the
Fourier transform of the photographed object. However, back then,
the construction of small and numerous crystals was not as acces-
sible as today, and the authors only presented a proof of concept
using a few crystals to restore the image of an object. Almost 25
years later, at Rice University, the first SPC was proposed and its
performance was successfully demonstrated based on the pioneering
idea of compression detection (CS) proposed by Donoho3 in 2006;
in the same year, it was also proposed in parallel by Takhar et al.4
Their approach was based on the use of random patterns to recon-
struct an image using a minimization algorithm applied for the SPC
camera. By 2008, the architecture of the SPI system was redefined
as reported in the work of Duarte et al.,5 consisting, in this case,

of a light source element, a spatial light modulator (SLM), and a
detector element [single-pixel detector (SPD)]. They presented their
image recovery method using the compressed sensing approach pro-
posed by Donoho3 two years before. Duarte proposed the first color
image processing method in 2008, and for this, an RGB filter was
used in conjunction with a single photodiode, and the measuring
method consisted of performing three consecutive measurements
using a different RGB filter each time to form the color pattern. This
approach was improved in 2013 by Welsh et al.6 by introducing a
dichroic beam splitter, which allowed for decomposing the white
light based illumination into three separate outputs (red, green, and
blue) and proposed placing one different photodiode at each of the
three outputs to collect the resulting light. This process allowed for
restoring an image by using each separate color channel output,
respectively, and obtaining a unified color image by combining these
outputs. Other types of applications using the single-pixel imaging
approach include the creation of 3D images,7 video streams, hyper-
spectral applications including a combination of infrared images
and images obtained in the visible range, or including 3D images
obtained by applying the TOF principle or even radar systems.
A timeline showing all these developments can be observed in
Fig. 1.

Following the developments mentioned, new methods
appeared that were aiming at more efficient and accurate processing
of photodetector outputs used for image reconstruction, alongside
new strategies used to generate illumination patterns and capture
them more efficiently. Sun et al. proposed in 2013 one of the first
approaches that enabled the generation of 3D images based on
the SPI principle.7 They proposed using a projector to illuminate
the scene with random patterns and place four photodetectors
at different angles that would detect the light reflected from the
objects in the scene and simultaneously measure the time it took
for each generated illumination pattern to reach the scene, be
reflected by the objects in it, and finally reach and be detected
by them. This method was based on the TOF principle and the
approach proposed by Howland et al. in 2013,11 applied in an SPC.
In 2014, Dai et al.15 proposed an adaptive basic scanning strategy
based on the illumination patterns generated by a method using
the wavelet transform and an image recovery approach using the
wavelet inverse transform. The latter soon became a reference
that will serve as a strategy for the generation of depth maps for
systems that work in combination with the time-of-flight principle.
That development reported by Dai et al. inspired Zhang et al. in
201530 to use illumination patterns generated by using the Fourier
transform and perform image recovery by applying the inverse
Fourier transform to the photodetector output signals, a concept
that will set the basis for the subsequent video sequence generation
and 3D applications using the SPI principle.33 These applications
take advantage of temporal redundancy to reduce the number
of processing steps to reconstruct depth maps and so reduce the
processing time required for each individual image, enabling video
streaming.

The latest advances in SPI-type systems focused on approaches
that could avoid the use of lenses for light structuring, as used in
PicoCam34 and FlatCam35 developments, presented in 2017; the
implementation of emerging carbon nanotube36 and graphene tech-
nologies, respectively, used in photodetectors, as proposed in 2017
and 2018;7 LED array illumination substituting the much more
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FIG. 1. Timeline showing different developments based on the single-pixel imaging approach using structured detection, referred to as computational ghost imaging,
showing the different modulation technologies developed and employing the sampling scheme based on compressed sensing (CS), machine learning (ML), and wavelet
transform (WT) approaches, respectively, between 2005 and 2020. The following references are shown: Sen et al.,8 Candès and co-workers,9,10 Donoho,3 Takhar et al.,4
Duarte et al.,5 Howland et al.,11,12 Shrekenhamer et al.,13 Yu et al.,14 Dai et al.,15 Radwell et al.,16 Hornett et al.,17 Gibson et al.,18 Higham et al.,19 Nitta et al.,20 Yu,21

and Yi et al. 22

expensive SLMs proposed in 2018;37 deep learning approach for
image recovery proposed in 2019;29 or hyperspectral imaging using
the single-pixel approach proposed in 2020.22 Figures 1 and 2 show
a timeline with different developments mentioned, used in single-
pixel imaging systems, including modulation technologies, sam-
pling, and processing schemes, respectively, developed between 1982
and 2020.

II. BASIC PRINCIPLE OF SINGLE-PIXEL IMAGING
Single-pixel imaging is based on the principle of spatial mod-

ulation of light, which relies on the projection of a sequence of
structured illumination patterns, generated using light modulation

devices, such as SLM, Digital Micromirror Devices (DMDs), or other
similar modulators (see Fig. 1), onto the object to be imaged and the
detection of this modulated light reflected by the object, using a lens
system for focusing, by using a single photodiode that delivers an
output voltage signal equivalent to the amount of light detected. The
relation between the structured illumination pattern and the light
signal reflected from the imaged object and finally detected by using
the photodiode in each measurement can be expressed through the
following equation:38

Si = α
M

∑

x=1

N

∑

y=1
O(x, y)Φ(x, y). (1)

FIG. 2. Timeline showing the different developments based on single-pixel imaging with structured illumination, referred to as computational ghost imaging, showing different
modulation technologies proposed and different sampling approaches used based on compressed sensing (CS) or machine learning (ML) between 1982 and 2020. The
following references are shown: Ben-Yosef and Sirat,2 Gatti et al.,23 Valencia et al.,24 Shapiro,25 Katz et al.,26 Bromberg et al.,27 Ferri et al.,28 Welsh et al.,6 Sun et al.,7
Radwell et al.,29 Zhang et al.,30 Yang et al.,31 and Xu et al.32
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Here, (x, y) are the spatial coordinates, O denotes the reflec-
tivity of the illuminated object, Φi stands for the i − th structured
pattern emitted in the sequence used, Si is the i − th single-pixel
(photodetector) measurement output corresponding to Φi, and α is
a factor describing the optoelectronic response of the photodetec-
tor (see Fig. 3). The final reconstructed image size, which applies to
both, the object being imaged and the amount of patterns projected,
is defined by MN pixels. From the definition of each of the struc-
tured illumination patterns projected and the output voltage signal
delivered by the photodiode in response to each of those particular
patterns being reflected from the illuminated object, a final virtual
image of the illuminated object can be recovered. Considering that
the reconstructed image I is proportional to the object reflectiv-
ity O, the reconstructed object image can be recovered through the
application of the following equation:38

I(x, y) = α
M

∑

x=1

N

∑

y=1
SiΦi(x, y). (2)

Here, the reconstructed image is an expression as the inner
product of the output voltage signal obtained in each measurement
and the structured pattern applied to obtain it. The spatial light mod-
ulation in single-pixel imaging can be carried out following two dif-
ferent schemes:39 (1) a structured illumination scheme named front
modulation [depicted in Fig. 4(a)] and (2) a structured detection
scheme named back modulation [depicted in Fig. 4(b)].

In the structured illumination scheme (see Table I), the light
modulation device is placed between in front of the object to be
imaged. Here, the light source (normally white) illuminates the SLM
that generates a particular illumination pattern that is then projected
onto the target object through a lens. In this way, structured illumi-
nation stimuli are generated, and the back-scattered light, reflected
by the illuminated object created by it, is finally detected by using
the single-pixel detector (SPD). In the structured illumination detec-
tion scheme, the light modulation device is placed behind the target

FIG. 3. The single-pixel imaging setup: SLM, patterns, and the measurement
signal of SPD.

FIG. 4. The two different approaches applied to SPI: (a) Front modulation: the
object is illuminated by using a light source and the light reflected by it gets directed
by means of a lens onto an SLM device where a sequence of patterns is loaded.
Each specific pattern enables certain pixel-mirrors to reflect light and others not
to do it. The light reflected from the SLM presenting a specific pattern is finally
detected by using a photodetector [or single-pixel detector (SPD)], and its output
voltage signals generated by each particular illumination pattern are processed
later to recover the image. (b) Back modulation: the SLM device programmed
with the specific sequence of patterns is illuminated by using the light source, and
the light reflected by each individual pattern is then projected by means of a lens
onto the object. The object generated reflected image is finally captured by using
the SPD, and its output voltage signals generated by each particular illumination
pattern are processed later to recover the image.39

object. The characteristic of the detection components (light modu-
lation device and the SPD) determines the field of view of the recon-
structed image. The spatial resolution and the overall quality of each
reconstructed single-pixel image obtained in this manner depend on
the following three criteria:

1. The type of structured patterns used in the spatial light
modulation (see Table III).

2. The sampling and scanning strategy used.
3. The image reconstruction algorithm (see Tables II and V).
4. Reconstruction quality vs running time (see Fig. 5).

There are seven scanning and sampling strategies documented
in the literature that have been proposed to be used for recon-
struction of single-pixel images: (1) Computational Ghost Imag-
ing (CGI), (2) Compressive Sensing Ghost Imaging (CSGI), (3)
Hadamard Single-Pixel Imaging (HSI), (4) Fourier Single-Pixel
Imaging (FSI), (5) Binary Fourier Single-Pixel Imaging (BFSI), (6)
Wavelet (WL) single-pixel imaging, and (7) Machine Learning (ML)
single-pixel imaging.

TABLE I. Summary of single-pixel imaging system architectures.41

Architecture Advantage Disadvantage

Focal plane
modulation

Active or passive
imaging

Limited choice on
modulation

Structured light
illumination

More choices for
active illumination

Active imaging
only

Rotating ground
glass

High power
endurance and
cheap

Not programmable
and random
modulation only

Customized
diffuser

High power
endurance and can
be customized

Not programmable
and complicated
manufacturing
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TABLE II. Summary of the reconstruction algorithm.41

Algorithm Advantage Disadvantage

Orthogonal
sub-sampling
(TVAL342 and
NESTA43,44)

Not computationally
demanding

Requires a specific
prior

Compressed sensing
(CS) (orthogonal
matching45)

A computational
overhead

Need only a
general sparse
assumption

No iteration matrix
inversion
conventional
correlation27 and
DGI28

Required a low
running time

Required high
measurement
numbers

A. Computational ghost imaging (CGI)
Computational Ghost Imaging (CGI) is a technique that

acquires spatial information about an unknown target by gener-
ating random patterns for spatial light modulation28 [depicted in
Fig. 6(a)]. Typically, the random patterns are binary so that CGI
can take advantage of high-speed binary pattern generation given by
a digital micro-mirror device (DMD). The CGI uses a correlation-
based algorithm for image reconstruction expressed through
Eq. (3),46 so it needs many measurements (that is, n = N ×M)
to produce a good-quality image. The CGI, due to the simplicity
of deployment of low-cost, robustness against noise and scattering,
its ability to operate over a long spectral range, and its capacity of
inherent encryption of patterns,23 is widely used in many SPI appli-
cations.24,28 The images reconstructed by applying this approach can
be obtained by applying the following equation (see Algorithm 1):

FIG. 5. Comparison diagram of different SPI algorithms that show the perfor-
mance based on the measurement number to make a reconstruction quality vs
running time. The red dotted circle represents the sparse representation and CGD
algorithms sensitive to measurement noise, the purple dotted circle represents
non-global optimization AP and DGI algorithms, and the green dotted circle rep-
resents AP and CGD algorithms that take the least running time for large-scale
reconstruction.40

I =
1
n

n

∑

i=1
(Sn −

1
n

n

∑

i=1
Si)(Φn −

1
n

n

∑

i=1
Φi). (3)

In Eq. (3), n is the number of structured patterns and I stands
for reconstructed image equivalent to the weighted sum of the
structured patterns.

B. Compressive sensing ghost imaging (CSGI)
CSGI is an improvement of the technique of CGI based on

Compressive Sensing (CS),3 which allows us to recover an image
with fewer single-pixel measurements (n≫MN). It was proposed
to improve the low data efficiency problem present in CGI. CSGI
attempts to recover the object image I with a size of MN by solving
a set of n equations using different sparsities of an image to solve G
in the following equation:22

G(I) =
M

∑

x=2

N

∑

y=2
{[I(x, y) − I(x − 1, y)]2 + [I(x, y) − I(x, y − 1)]2}.

(4)
Here, I(x, y) represent the raw image. CSGI allows for using

arbitrary structured patterns for spatial light modulation, such as
random patterns, Hadamard basis patterns, Fourier basis patterns,
discrete cosine basis patterns, or wavelet basis patterns [depicted in
Fig. 6(b)]. To reconstruct the object image, CSGI attempts to search
for a candidate of I(x, y), which can minimize G (4). Different algo-
rithms have been proposed for this task, such as L1-magic,48 orthog-
onal matching,45 augmented Lagrangian, an alternating direction
algorithm (TVAL3),42 or NESTA43,44 algorithm (see Tables II
and V). To date, many improvements have been made to the basic GI
algorithm to be able to recover images more efficiently,28,44 among
which the following can be found: differential GI,44 normalized GI
(NGI),49 corresponding imaging,50 pseudoreverse GI,51 sinusoidal
GI,52 and GI using the Hadamard basis.28

C. Hadamard single-pixel imaging (HSI)
The Hadamard pattern53 Eq. (5) is the most commonly used

one in reconstructions of SPI images, mainly due to its orthogonal-
ity properties [depicted in Fig. 6(c)]. For generating a Hadamard
matrix, a square matrix is first defined where its components are
+1 or −1 with an agreement of two distinct rows in exactly n/2
positions (and thus a disagreement in exactly n/2 positions). This
generated matrix H should satisfy the condition of HHT = nI, where
T is the transposition of the matrix H, I stands for an identity
matrix, and N is the order of the matrix and can be generated by the
Kronecker product expressed through Eq. (5), where 2 is an inte-
ger smaller than k and the matrix size is M ×N for (M = N), as
expressed by Eq. (6),53 with m = 1, 2, 3, . . . , M and n = 1, 2, 3, . . . , N,

H2k =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H2k−1 H2k−1

H2k−1 −H2k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= H2 ⊗H2k−1 , (5)

H2k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H(1, 1) H(1, 2) ⋅ ⋅ ⋅ H(1, N)

H(2, 1) H(2, 2) ⋅ ⋅ ⋅ H(2, N)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

H(M, 1) H(M, 2) ⋅ ⋅ ⋅ H(M, N)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)
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FIG. 6. Overview of the sampling and scanning strategy used for single-pixel imaging reconstruction: (a) Computational Ghost Imaging (CGI) [Reprinted with permission
from H.-C. Liu, Sci. Rep. 10, 14626 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License]. (b) Compressive Sensing Ghost Imaging
(CSGI), adapted with permission from47 Cao et al., Sensors 20, 7093 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License. (c)
Hadamard Single-Pixel Imaging (HSI) [Reprinted with permission from G. M. Gibson, S. D. Johnson, and M. J. Padgett, Opt. Express 28, 28190–28208 (2020). Copyright
2020 Author(s), licensed under a Creative Commons Attribution 4.0 License].

To construct Hadamard’s sequence (see Fig. 7), Sylvester’s
principle of recursive generation matrix was used, as expressed by
Eq. (6), to generate the Hadamard matrix Hk

2 (m, n).
There are different orders for Hadamard Matrix generation as

Cake-Cutting (CC),21 Russian Doll (RD),54 and Origami (ORCS).55

For CC, the Hadamard matrix rows are organized so that the con-
nected components follow a rising order. Each connected compo-
nent corresponds to a group of pixels with the same value [depicted
in Fig. 8(a)]. The RD is a scaling order method by a factor 2 of the
Hadamard matrix [depicted in Fig. 8(b)]. This method provides a
better signal-to-noise ratio (SNR) of the reconstructed image SPI.

Origami is a method of manipulation of patterns Hadamard that
for generation needs to divide basic patterns them into n/4 groups,
where each new pattern will be generated to change the sequence
of “0” and “1,” in the direction vertical and horizontal [depicted in
Fig. 8(c)].

D. Fourier single-pixel imaging (FSI)
FSI acquires the Fourier transform56 of the object image and

reconstructs the object image by applying an inverse Fourier trans-
form. The Fourier transform of an image is a complete set of Fourier
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FIG. 7. Example of Hadamard matrix generation H1, H2, H4, H8, H16, and H32 using
Sylvester methods.

coefficients [depicted in Fig. 9(a)]. Each coefficient is the weight
corresponding to a unique Fourier basis pattern (also known as
a “sinusoidal pattern” or “fringe pattern”). A Fourier basis pat-
tern Pφ(x, y) is obtained by applying an inverse Fourier transform
to a Dirac delta function δF(u, v, φ) as expressed in the following
equation:56

Pφ(x, y) =
1
2
[1 + real{F−1

{δF(u, v, φ)}}]. (7)

Here, (u, v) is the coordinate in the Fourier domain (or spatial-
frequency domain), φ is the initial phase, real denotes the real part,
F−1 denotes an inverse Fourier transform, and δF(u, vφ) is defined
as shown in the following equation:56

δF(u, v, φ) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

ejφ, u = u0, v = v0

0 otherwise.
(8)

E. Binary Fourier single-pixel imaging (BFSI)
BFSI can be implemented following two methods: (1) the

four-step phase-shifting FSI and (2) the three-step phase-shifting

FSI [depicted in Fig. 9(b)]. In both methods, each Fourier coef-
ficient F(u, v) can be acquired by differential measurements per-
forming 4 and 3 measurements, respectively.59 The four-step phase-
shifting FSI allows for acquiring each complex-valued Fourier
coefficient F(u, v) expressed by Eq. (9),59 by using the following
four patterns: P0(x, y), Pπ/2(x, y), Pπ(x, y), and P3π/2(x, y) during
the corresponding four single-pixel measurements: D0, Dπ/2, Dπ ,
and D3π/2,

F(u, v) = (Dπ −D0) + (D3π/2 −Dπ/2). (9)

In the case of the three-step phase-shifting, FSI acquires each
complex-valued Fourier coefficient with three single-pixel measure-
ments (u, v) and applying the following equation:59

F(u, v) = (2D0 −D2π/3 −D4π/3) +
√

3j(2D2π/3 −D4π/3). (10)

Here, D0, D2π/3, and D4π/3 are the single-pixel measure-
ments corresponding to each applied structured pattern: P0(x, y),
P2π/3(x, y), and P4π/3(x, y). In both implementations of the FSI, the
number of Fourier coefficients is the same as that of image pixels
(M ×N) obtained at the end. Therefore, it is possible to acquire
the coefficients in a specific order by using different type sam-
pling paths that can be circular, diamond-shaped, or spiral,59 where
more important coefficients get higher priority. The four-step phase-
shifting FSI and the three-step phase-shifting FSI are, respectively,
essentially differential measurement methods, one symmetrically
and one asymmetrically repetitive. For the image reconstruction
in this case, it is necessary to apply a 2D inverse Fourier trans-
form to the SPD output signal matrix. As Fourier basis patterns
are initially grayscale, FSI has difficulty in taking advantage of high-
speed binary pattern generation allowed by DMDs. Hence, Fourier
basis pattern binarization using the up-sample-and-dither strategy
is required in this case to reduce the quantization errors induced
through binarization. The patterns to be binarized should be up-
sampled with k > 1. To perform the up-sampling, interpolation of
the image with the K2-fold number of patterns equivalent to the
application of the binarization algorithm based on error diffusion is

FIG. 8. Hadamard patterns generation CC, RD, and ORCS: (a) cake-cutting (CC)21 Hadamard basis [Reprinted with permission from W.-K. Yu, Sensors 19, 4122 (2019).
Copyright 2019 Author(s), licensed under a Creative Commons Attribution 4.0 License]. (b) Russian Dolls (RD) Hadamard ordering [Reprinted with permission from Sun
et al., Sci. Rep. 7, 3464 (2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution 4.0 License]. (c) Origami pattern construction (ORCS) [Reprinted
with permission from W.-K. Yu and Y.-M. Liu, Sensors 19, 5135 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution 4.0 License].
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FIG. 9. Overview of the sampling and scanning strategy used for single-pixel imaging reconstruction: (a) FSI, adapted with permission from Zhang et al., Opt. Express 25,
19619–19639 (2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution 4.0 License. (b) BFSI57 [Reprinted with permission from Zhang et al., Sci.
Rep. 7, 12029 (2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution 4.0 License]. (c) WT [Reprinted with permission from Xi et al., Opt. Express
27, 32349–32359 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution 4.0 License]. (d) ML, adapted with permission from Gibson et al., Opt.
Express 28, 28190–28208 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.

Rev. Sci. Instrum. 92, 111501 (2021); doi: 10.1063/5.0050358 92, 111501-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments REVIEW scitation.org/journal/rsi

required. If k = 2 is used, it can effectively suppress the quantization
errors.56,59

F. Wavelet (WT) single-pixel imaging
Wavelets are mathematical functions59 that map data onto dif-

ferent frequency components, where each component has a scale
resolution [depicted in Fig. 9(c)]. WT has advantages over the
Fourier method under condition discontinuities.60 In application,
SPI, the Haar wavelet,60 is selected to be the simplest wavelet, the
mother wavelet function of which is a binary function expressed in
Eq. (11) and a 2D matrix defined in Eqs. (12) and (13).58,61

For implementation, due to the fact that Haar wavelets consist
of a sequence of+1, 0, and−1, it is necessary to use two light frequen-
cies to represent +1 and −1, respectively. The image is then recon-
structed by inverse wavelet transform as expressed by the following
equation:

φ(t) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1, tε[0, 1/2]

−1, tε[1/2, 1]

0 otherwise,

(11)

Mj(x, y) =
√

2s−qφ(2s−q
((y − 1)n + x) − k), (12)

I =M−1
j B. (13)

G. Machine learning (ML) single-pixel imaging
Applying the machine learning technique to SPI is the most

recent approach that uses deep learning in a convolutional neural
network (CNN) to reconstruct images based on fewer measurements
than those required in other methods, such as orthogonal sampling
or the ghost imaging technique.62 The integration of Graphics Pro-
cessing Units (GPUs) for CNN allows higher computation rates than
those achieved by conventional computer processors. Hence, apply-
ing a CNN together with the computational GI approach allows
us to reconstruct an image using a minimal number of measure-
ments.62 In some applications, SPI does not need to perform a full
image reconstruction to detect and classify objects, so it can identify
even very fast-moving objects due to this advantage.29,62,63 Applying
a CNN [depicted in Fig. 9(d)] for image reconstruction with fewer
samples could be adapted into a control system for an autonomous
vehicle using image-free classification sensing schemes.62,64

H. Discussion on different single-pixel imaging
approaches

Regarding SPI image reconstruction methods, HSI and ML
have proved to be more adaptable to existing illumination modu-
lation technologies using DMD devices or even LED arrays in its
simpler form. The ML is a good candidate that already allows for
doing image reconstruction with a high compression factor without
the need to use N ×N patterns, which allows the user to decrease
the SPD output signal processing times while still attaining quite
acceptable image quality.48 It is an ideal method for applications
requiring video streaming or forming part of navigation systems
where a quick response, i.e., very low data processing time for each

FIG. 10. The number of works reported applied in SPI using the methods from
CGI, HSI, FSI, WT, and ML from 2006 to 2020, FSI with 46 published, HSI with 29
published, GI with 25 published, WL with 15 published, and ML with 15 published.

individual image, is needed. ML can be combined with algorithms
developed for the CSGI approach3,49,50 and can adapt deep learn-
ing to train a sequence of projected patterns or improve the neu-
ral activation network used in the CNN process. ML implementa-
tions require GPUs and require large databases for network training.
Hence, this approach does have limitations under certain condi-
tions, noise or untrained networks. The FSI56 and WT59 methods
apply the inverse transforms for the reconstruction of SPI images.
Therefore, the application of FFT and FWT algorithms on GPU
is possible for optimization of the rebuild time and the possibil-
ity of using only 3%–10% of the projected patterns. Unfortunately,
these methods cannot be integrated directly in systems using devices
such as DMDs, so it might be necessary to apply quantization tech-
niques, smoothing, and up-sampling strategies for binarization of
the patterns producing quantization noise when using them, all of
which might increase the processing times required and degrade the
quality of the reconstructed images.18,65 The CGI-based techniques
use randomly generated illumination patterns that have the disad-
vantage of, unlike Hadamard that has properties of orthogonality,
requiring a maximum amount of N ×N patterns. However, in the
case of random patterns, it would be necessary to generate many
patterns to enable for the reconstruction of an image with good qual-
ity, which will inevitably increase the data processing time required
to generate an image. One solution is to use CSGI- or ML-based
techniques. The GI is adaptable to SPI systems using technologies
such as DMD, LED, SLM, and pseudothermal light source, which
gives the greater capacity for rebuilding applications of images in
the x-ray66 and THz67,68 spectra. In recent years, an increase in the
use of the FSI method can be observed (see Fig. 10), caused by the
application of FSI improved algorithms that reduce low-frequency
sampling, maintaining the image quality by using random sam-
pling techniques.69 Some methods, such as ML, have been recently
implemented in several SPI systems, mainly due to advances in
the use of GPU architectures, normally used for fast-moving object
detection.29,62

III. MODULATION TECHNOLOGIES
As previously shown in Table II, there are several options

regarding the modulation technologies used to produce the
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patterns for either structured detection or structured illumination
in SPI, among which the following can be found: Liquid Crystal
Spatial Light Modulators (LC-SLMs), Digital Micromirror Devices
(DMDs), LED arrays, or pseudothermal light source.38

A. Liquid crystal spatial light modulators (LC-SLMs)
A liquid crystal spatial light modulator (LC-SLM)38,70 is an elec-

trically programmable device that modulates light according to a
fixed spatial (pixel) pattern induced. SLM is typically used to con-
trol incident light in amplitude, phase, or through the combination
of both. When a polarized light beam enters the SLM device, it
passes through an array of glass structures with transparent elec-
trodes and liquid crystal layers. If a certain voltage is induced on
the electrodes, an electric field is produced that causes a change in
the LC layer’s optical properties and generates a phase pattern in
each pixel, which causes the light to be reflected or not, a technol-
ogy which can be combined with GI schemes using LC-SLM as a
single-pixel detector32 (see Table III).

B. Digital micromirror devices (DMD)
Digital Micromirror Devices (DMDs),38 consisting of an array

of hundreds of thousands of individually addressable micromirrors,
offer a method of modulating light that is fast and works over a
broad range of wavelengths. Micromirrors can be individually ori-
ented at ±12○, to the array’s plane, by displaying a binary pattern on
the DMD if illuminated using a structured light pattern. The DMDs
are commercially available, having binary pattern display rates of
below 40 kHz, which allows for near-video rate image reconstruction
on a standard performance computer for relatively low-resolution
applications60 (see Table III).

C. LED arrays
The LED arrays38,71 can offer a solution to capture images of

a dynamic scene with a rate higher than the one normally achieved
by DMDs using high-speed structured illumination with a switching
time of the LEDs below 1 μs. This type of technology can adapt to
Hadamard pattern generation and compressive sensing algorithms
used for image reconstruction based on the SPI37 principle (see
Table III).

TABLE III. Summary of modulation methods.38

Technology Advantage Disadvantage

LC-SLM38,70 Grayscale
modulation and
programmable

Slow modulation
and low-power
endurance

DMD38,74 Faster than LC-SLM
and programmable

Binary modulation
and not fast enough

LED array38,71 Much faster than
DMD and
programmable

Binary modulation
and structured
illumination only
random

Pseudo-thermal38,72 Much faster than
DMD and controller

Modulation and
complicated
manufacturing

D. Pseudo thermal light source
Another option for generating illumination patterns in the GI

scheme is the use of pseudo-thermal light sources, which consist in
applying a laser beam through a rotating ground-glass diffuser.72

The rotary action of the diffuser causes the cross-sectional intensity
of the resulting optical beam to vary with time, creating two optical
beam splitter forms, i.e., two near-identical copies of the light field,
which can be used as the reference and object beams in a classical
GI system. The spectral properties of the pseudo-thermal source are
determined by the properties of the materials from which it is made,
and the light that emerges of a pseudo-thermal source is compared
for its coherence properties to the light originated in a LED source73

(see Table III).

E. Discussion on different modulation technologies
For SPI applications, DMD as a projection element has become

the most successful candidate for different scanning methods (HSI,
FSI, GI, WT, and ML). In recent years, DMDs have increased their
modulation frequency from 20 to 40 KHz74,75 but still remain quite
slow if compared to commercially available LED arrays.37,59 LED
arrays allow lower costs in applications with required operational
speeds that must be higher than those used by other technologies.
For applications requiring video streaming or 3D image reconstruc-
tion,76 high processing speeds have been achieved,59,77 although hav-
ing relatively low spatial resolutions of, e.g., 32 × 32 pixels37 and
also some limitations regarding the incident light power at 5 mW.77

Pseudothermal light source technology has become the element of
choice for applications in the THz spectrum68 with better accuracy
and robustness to noise if compared to DMDs.69 In terms of the
work published in recent years regarding the SPI, an increase in
using machine learning methods can be observed (see Fig. 10). The
trend indicates that in successive years, ML will displace other meth-
ods, such as FSI and HIS. The spatial light modulator (LC-SLM) has
many applications in SPI if we compare it with the DMD technology
in what its frequency resolution is concerned. The DMD is faster
than SLM and also less expensive. Following the improvements in
the liquid crystal display (LCD) technology, it could be used as an
intensity-only SLM to conduct structured illumination, which would
allow SPI to be performed in a lens-less way.78 Nevertheless, the
DMD technology still has many applications in the SPI (see Fig. 11)
domain. Although there have been improvements in modulation
frequency, DMDs still have frequency limitations for some applica-
tions, such as video streaming and 3D imaging. The LED technology
applied to SPI is still in the testing phase. It is possible that in the
future, it could displace the DMD technology due to its low-cost37

and high modulation frequencies.

IV. SINGLE-PIXEL RECONSTRUCTION ALGORITHMS
In the past few years, different algorithms have been pro-

posed for SPI reconstruction in the literature (see Fig. 5), which
are classified into three categories according to their iteration type
(see Table IV): the non-iterative methods (DGI), the linear iter-
ative methods (GD, CGD, Poisson maximum likelihood method,
and AP), and the nonlinear iterative methods (sparse representation
method, TV).
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FIG. 11. Yearly analysis of the amount of publications regarding the existing tech-
nologies used in SPI between 2006 and 2020. As it can be observed in the
graph, DMD appears in 50 publications, LC-SLM in 19, SPI using LED arrays in
4, and pseudothermal light source in 12 publications. Note that DMD technology
is the mostly used technology in SPI applications if compared with other technolo-
gies, such as those using LED arrays for structured illumination or other similar
technologies.

● Non-iterative methods (see Algorithm 1) perform direct
reconstruction of the linear representation system SPI Ax
= b without iteration (where A ∈ Rmxn denote the light
modulation matrix m patterns that represent n pixels, x ∈

Rnx1 denote the target scene, and b ∈ Rmx1 is the mea-
surement vector) through the calculation x = (ATA)

−1
ATb

based on the fact that SPI measurement stands for the cor-
relation between modulation patterns and the target scene
x. These methods are based on linear correlation, requir-
ing a more significant measurement value to approximate
the target scene. More measurements allow for produc-
ing a high-quality reconstruction. Some linear correlation
methods have been proposed as ghost imaging (DGI) (see
Algorithm 1),28 takes consideration illumination fluctu-
ations the pattern intensity s ∈ Rmx1 (14),28 with {bi}

=
1
m∑

m
i=1bi as measurement average and {ai} =

1
m∑

m
i=1ai as

modulation pattern (row) intensity average, to reconstruc-
tion SPI (some strategies SPI as CSGI and CGI used these
types of algorithms),

x = {biai} −
{bi}

{si}
{siai}. (14)

● Lineal iterative methods are based on solving the quadratic
minimization problem min ∥Ax − b∥2

l2 through the gradi-
ent descent (GD)40 or conjugate gradient descent (CGD)79

methods for the reconstruction of an n-pixel SPI image.
Other methods use photons signal statistics to arrive at
sensors and spectral properties of the light field as the
alternating projection (AP) method.80 Due to the photons

TABLE IV. Comparison of different SPI reconstruction algorithms.40

Algorithm Method Principles

No iteration Matrix inversion
formation
conventional
correlation27 and
DGI28

Formation fitting
measurement:
scene–pattern
correlation

x = (ATA)
−1

ATb

Linear
iteration

Problem Gradient p Step ∆x

Gradient descent
(GD)40

Formation fitting min ∥Ax − b∥2
l2 AT

(Ax − b) −
pT AT r

pT AT Ap

Conjugate gradient
descent (CGD)79

ATAx = ATb −rk−1
−

r(k−1)T r(k−1)
r(k−2)T r(k−2) p −

rT r
pT AT Apk

Poisson maximum
likelihood82

Signal statistic ∑
m
i=1(aix − bi log(aix)) AT

(
Ax−b

Ax ) Algorithm 2

Alternating
projection (AP)40

Measurement:
zero-spatial
frequency
coefficient

Ax = b aT
i ⊙(aT

i ⊙ x)
max (ai)2

aix−bi
aix

1

Non-linear
iteration

Sparse
representation
(CS)5,85

Image prior proj = ATr argmax∥proj∥ ((ATA)
−1

AT
)b ∥y − Ax∥2 < ε

Total variation
(TV)83

Dx = c, Ax = b min L = ∥c∥l1 +
μ1
2 ∥Dx − c + y1

μ1
∥

2

l2
+

μ2
2 ∥Ax − b + y2

μ2
∥

2

l2
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ALGORITHM 1. Differential ghost imaging (DGI) SPI.40

following Poisson distribution,81 the SPI reconstruction
can proceed through the maximum likelihood estimation
method82 (see Algorithm 2). This method aims at esti-
mating x by maximizing the likelihood the measurements
bi ∈ b (15),82

min L(x) =
m

∑

i=1
(aix − bi log(aix)). (15)

The AP is a SPI reconstruction method from the view of
the spatial spectrum, the signal light arrived to the photo-
diode, where measurement bi ∈ b is related to the light field’s
zero-spatial-frequency coefficient. In spatial space, the target
image x can be represented80 by

x′ = x −
aT

i

max (ai)
2

aix − bi

n
. (16)

● Nonlinear iterative methods aim at SPI reconstruction using
a reduced number of measurements. There are two meth-
ods that are widely used, including the spatial representation
and the total variation (TV).83 The first method is based
on the theory of compressive sensing (CS)5 that seeks to
solve the least-squares problem ∥y − Ax∥2

l2 through using
an iterative algorithm that seeks the maximum correlations
between the measurements and the matrix A, called dic-
tionary, which contains in each column atom. First, deter-
mine the target scene x. Then, in each iteration type, algo-
rithms seek to select the best atom iteratively until we can
reduce the approximating error or reach a sure accuracy (see
Algorithm 3). Once we reach the optimal atom, we can
get the signal recovered x. The CS methods more used
for SPI reconstruction as orthogonal matching,45 OMP,84

ALGORITHM 2. Poisson SPI.40

ALGORITHM 3. Orthogonal matching pursuit OMP.85

batch-OMP,85 fast-OMP,86 and others can be integrated into
FPGA or GPU technologies.

The TV method is based on the calculation of the gradient for
SPI reconstruction. Through minimizing the Lagrangian function
(17), we can determine the target scene x (18). The (TVAL3)42 and
NESTA43,44 algorithms use this type of method,

min L = ∥c∥l1 +
μ1

2
∥Dx − c +

y1

μ1
∥

2
l2 +

μ2

2
∥Ax − b +

y2

μ2
∥

2
l2 , (17)

x = (μ1DTD + μ2ATA)
−1
[μ1DT

(c −
y1

μ1
) + μ2DT

(c −
y2

μ2
) . (18)

A. Discussion on different reconstruction algorithms:
single-pixel

For SPI reconstruction, defining that algorithm is the best is
a factor that depends on the application development. In the case
of reconstruction with small-scale images, the DGI, TV [depicted
in Fig. 12(a)], and CS [depicted in Fig. 12(b)] methods need the
least measurements and minimum processing time (see Fig. 5). This
advantage allows their application in vision close to real-time. At the
same time, Poisson and GD methods need the highest number of
measurements and processing time higher in comparison with other
methods [depicted in Fig. 12(c)]. For the case, large-scale images, the
CGD, and AP methods run fastest (see Fig. 5). In noise conditions,
the TV, CS, and AP methods are the most robust but are need to take
into consideration that there must be a trade-off between capture
efficiency, computational complexity, and noise robustness among
which we like to choose which is the most efficient method to the
SPI image reconstruction. At the level of memory and computation
complexity, the DGI and AP methods are the simplest to implement,
and for being non-global, methods do not need to store all the pat-
terns during the processing of calculation, which gives them a high
storage efficiency advantage, for example, its implementation into
device FPGA.
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FIG. 12. SPI simulation results of different algorithms under different sampling ratios: (a) sampling ratio = 0.2, (b) sampling ratio = 0.8, and (c) sampling ratio = 3. We can
see that CS and TV methods need few samples for SPI reconstruction, while DGI, GD, and Poisson need a higher sampling ratio >1.

V. SINGLE-PIXEL 3D IMAGING AND RANGING
3D imaging and ranging represents an intensively explored

technique with a wide range of applications, including object detec-
tion, surface mapping, and 3D scenario mapping for autonomous
vehicles. Within the field of 3D imaging, there are different prin-
ciples used that include time-of-flight,87,88 stereo vision,42,89,90 and
3D computational ghost imaging7,26 approaches, each having their
advantages and drawbacks, which depend on the specific application
for which they are developed.

A. Time-of-flight imaging
The Time-of-Flight (ToF) measurement method determines

the distance d of a scene by actively illuminating it with pulsed light
(normally emitted by lasers) or continuous-wave modulated light
(normally emitted by an array of LEDs) and comparing the detec-
tion time ta of the back-scattered light to the time of the illumination
pulse t0 (i.e., d = Δtc/2), where Δt = (ta − t0) is the time of flight and
c is the speed of light. Using in this way the obtained distance infor-
mation of the objects existent in the illuminated scene, a 3D image
of the surroundings of ToF systems can be obtained by combining a
depth map (i.e., the 2D array containing the data about the distance
of different objects in the scene to the photodetector) with a trans-
verse reflectivity image of the same scene obtained by applying the
SPI principle.88,91 For ToF measurements, pulsed illumination using
nanosecond pulsed lasers is the best option if combined with really
fast photodetectors capable of near single-photon detection (such as
single-photon avalanche diodes—SPADs, for example) due to tem-
poral resolutions achieved in these systems the tens of picoseconds.
Therefore, the ToF method is compatible with long-range, high-
precision depth mapping. Some applications using this approach,
capable of near single-photon counting,11,87 offer the advantage of
working with low light intensity: a very important asset if the active

illumination light reflected from objects placed at large distances
is to be detected. One crucial problem in these applications is the
signal-to-noise ratio (SNR), as the system must be able to discrim-
inate the very week light signals originated by active illumination
from the normally quite high background illumination signals caus-
ing most of the photon-shot noise. One additional problem that
has to be taken into consideration here is the fact that silicon-based
photodetectors have much higher QE in the visible part of the spec-
tra (i.e., much higher ability to detect background radiation) than
in the NIR part of the spectra, a preferred kind of active illumina-
tion radiation making it “invisible” to the human eye. However, it
has reducing detection efficiency due to dead time (typically 10 s
of nanoseconds) between successive measurements. The latter can
be importantly improved by using narrow band filters in front of
the photodetector arrays that allow only active illumination radi-
ation to come through, eliminating the background illumination
negative influence. In recent developments based on SPAD arrays
and laser pulses in nanoseconds,91 the depth accuracy of 3 mm at
a detection range of 5 m has been reported. There exist two addi-
tional approaches, when it comes to ToF approaches: direct ToF
(d ToF), where the system measures directly the time it takes for
the laser emitted light pulse to reach an object in the illuminated
scene, get reflected by it, and finally reach the photodetector array
and indirect ToF (i-ToF), where hundreds or thousands of pulses
are emitted, and the amount of photons detected by the photode-
tector array is statistically analyzed and compared to the amount
of photons emitted within each pulse duration to be able to deter-
mine the ratio between the two and so, indirectly, calculate the
mean time it took for the emitted pulses to reach the objects in
the scene, be reflected by them, and finally get detected by the
photodetector array and in this manner obtain the depth map of
the illuminated scene. The ToF method, in each of its different
approaches, is definitively a good candidate for long-distance 3D
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FIG. 13. Time-of-flight imaging 3D [M.-J. Sun and J.-M. Zhang, Sensors 19, 732 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution 4.0
License].

measurement and offers several advantages over other 3D imaging
techniques, such as stereo vision or structured light 3D imaging89,92

(see Fig. 13).

B. Stereo vision
Stereo vision uses two or more images obtained simultane-

ously by using image sensors placed at different viewpoints in order
to reconstruct a 3D image of the scene through the comparison
of different geometries depicted in the images obtained. Another
approach uses different illumination patterns for the simultaneous
images taken (as in the photometric stereo41,90 approach). To apply
the stereo vision approach in SPI, it is necessary to detect the differ-
ent projected light patterns that illuminate the objects in the depicted
scene using multiple single-pixel detectors, placed at a separation of
90○ from each other.76 It is recommended to use the light pattern
modulation generated by DMDs38 or, in case the spatial resolution
is not so important for the application of choice, a LED array,37,77 an
approach that can additionally improve the data processing speed
for the 3D image reconstruction (see Fig. 14). Mainly, two factors
define the performance of SPI-based stereo vision 3D image recon-
struction: the quality of the 2D images obtained by the SPDs placed
at different viewpoints and separated 90○ from each other and the
geometry of the system setup that determines the depth resolution
that can be attained and that depends on the ratio of separation
between the SPDs and their distance to the object to be depicted.
Due to the limited depth resolution that can be obtained if stereo
vision approach is followed, it can be employed in applications such
as close industrial inspection or object 3D profiling (see Fig. 14).

C. 3D computational ghost imaging (3D-CGI)
An alternative to the stereo vision technique, which needs

that the scenario is aligned and has the correct geometry, could
be applying the principle of photometric stereo vision.90 The pho-
tometric stereo vision systems can capture a sequence of images
where each one is obtained using different illumination setups. The
resulting image sequence is much easier to align, provided that the
sequence is captured fast enough to avoid movements of the objects
in the scene between consecutive image frames. From the image
sequence’s shading profile, the surface normals can be estimated
and used to finally generate the depth map of the illuminated scene.
This technique is adaptable to computational GI26,93 (see Fig. 15)
using multiple single-pixel detectors rather than multiple illumi-
nation sources.7 Placing multiple single-pixel detectors at different
positions to depict the same illuminated scene allows for captur-
ing multiple images using different illumination, similar to what is
used in the photometric stereo vision systems: the shading in each
simultaneously obtained SPI generated image appears as if it was
illuminated from a different direction. The surface gradients could
be estimated from the shading of SPI images and used to finally gen-
erate the depth map of the scene or the 3D reconstruction of the
objects depicted90,94 (see Fig. 15).

D. Discussion on different single-pixel 3D imaging
and ranging approaches

For 3D SPI applications, the ToF method allows for creating
a high-precision depth mapping achieving resolutions of <10 mm
at distances even larger 100 m. Due to the use of pulsed lasers,
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FIG. 14. Stereo vision 3D [Reprinted with permission from Zhang et al., J. Opt. 18, 035203 (2016). Copyright 2016 Author(s), licensed under a Creative Commons Attribution
4.0 License].

the time resolutions of order of the tens of picoseconds are achiev-
able, enabling fast measurements. The limitations we detect for this
approach lie mainly in the following: (1) the eye-safety regulation
IEC62471 for class 3R lasers that limit the laser power to 5 mW95

in the visible range that is also related to extremely low detection
efficiencies of silicon-based photodetectors for active illumination
with wavelengths of 850 nm or 905 nm usually used for this kind
of applications, (2) the necessity to limit the background illumi-
nation, especially in the visible range, and (3) the fact that when
interacting with particles with sizes in the micrometer or supra-
micrometer range (as those present in fog, rain, snow, or smoke rich
environments), several scattering mechanisms between the emit-
ted photons and these particles take place, preventing the active

FIG. 15. 3D computational ghost imaging through the use of a photodetector array
for this method of reconstruction is needed for a high number of samples.

illumination radiation of propagating toward the objects in the scene
or from these objects to the photodetectors trying to detect them.76

For 3D SPI applications, SPAD detectors96 can be used for appli-
cations such as the detection of moving objects using laser systems
with pulse times of around 50 ps, motion detection in oblique envi-
ronments, or recovery of three-dimensional objects behind the line
of sight.97,98 For 3D ToF applications, ML techniques are better
suited for depth estimation and 3D reconstruction.96 If the different
stereo vision techniques applied to 3D SPI camera applications are to
be compared to each other, the photometric stereo vision approach
would be the most efficient. Hence, it would be advisable to use
multiple (minimum 4) SPDs or, if not available, recover four SPI
images obtained at different positions, even if not obtained simulta-
neously, in order to be able to perform the 3D image reconstruction
using shape-from-shading (SFS) techniques90,94 or deep learning.99

These techniques can be merged with ToF to reach higher spatial

FIG. 16. Number of works reported applied in SPI-3D use different methods as
time-of-flight with 13 published, stereo vision with 6 published, and 3D compu-
tational ghost imaging with 12 published using the existing technologies such as
DMD, LC-SLM, LED array, and pseudo-thermal.
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resolutions of the final depth map. In terms of works published in
recent years regarding the 3D SPI, the 3D ToF method (see Fig. 16)
has proved to be a reliable method that offers quite acceptable spa-
tial resolutions of <5 mm at 5 and 10 m distances for achieved
time resolutions of between 50 and 100 ps, which can be adapted
for 3D SPI used in static or moving scenes62 having a wide field
of applications, among others, also for autonomous navigation of
unmanned vehicle. The other methods revised, used in 3D SPI gen-
eration, such as Vision Stereo, require multiple detectors and precise
geometry adjustments, so they are not readily applicable for SPI.
This might explain the limited number of publications reported on
this approach. In contrast, the GI method combined with photomet-
ric stereo vision90 is widely used in unconventional 3D applications,
such as multi-wavelength imaging,13 terahertz imaging,68 and x-ray
imaging.41

VI. EVALUATION OF DIFFERENT SYSTEM
ARCHITECTURES USED TO GENERATE
SINGLE-PIXEL IMAGES

A limiting factor in single-pixel imaging systems using central
processing units (CPUs) of conventional personal computers (PCs)
is the total time required for signal collection and image reconstruc-
tion, taking ∼30 min for a static image with spatial resolutions com-
parable to those produced by commercially available image sensors.
The delays present in the data transport, inherent to the amount
of data required to define the instruction cycles and generation of
patterns sent to the DMD and the data collected from the SPD, the
attainable data transfer speeds if USB protocols are used, and the
computational cost of the algorithms used to reconstruct images,
all limit the use of this hardware architecture for real-time SPI
applications. An alternative is the integration of field-programmable
gate-arrays (FPGAs) or embedded GPU devices. Elements such as
FPGA are used to accelerate the hardware performance by managing
memory accesses more efficiently using an architecture based on a
pipeline to improve memory reading speeds100 when processing the
acquired data and reconstructing single-pixel images. Some other
FPGA solutions use Synchronous Dynamic Random-Access Mem-
ories (SDRAMs) for data transport from the FPGA to the DMD,
decreasing the time for overall signal collection.101 It is necessary
to consider the computational cost of the reconstruction algorithms
used in SPI. One option is applying the orthogonal correspondence
search (based, e.g., on the Orthogonal Matching Pursuit, OMP) algo-
rithms85 implemented for HSI or FSI. This algorithm is divided into
two main stages: finding the closely correlated vectors and solv-
ing the least-squares problem by applying the conjugate gradient
(CG) technique,100 a calculation that unfortunately requires high
processing times due to the fact that it requires inversion matrix cal-
culations85 or other similar methods, such as the one proposed by
Quero.85 Following this approach, some system solutions based on
Xilinx FPGA (XC7VX690T),101Virtex-5,102 and Virtex-6 FPGA103

architectures have reported reconstruction times of 24 μs for 128 ×
128 pixel image sizes (see Table V101,102).

The compressed sensing algorithms are very suited to be
implemented in parallel on GPUs, an approach involving massive
matrix/vector operations on the GPU platform to achieve good SPI
performances. It is necessary to point out, nevertheless, that the
bottlenecks, if the OMP algorithm is applied, lie in the projection

TABLE V. Comparison of different solutions of FPGA using OMP, applying to the
reconstruction 2D image.

FPGA Image size Reconstruction time

Virtex-5102 128 × 128 24 μs
Virtex-6103 128 × 1 16 μs
Virtex-7101 128 × 128 8.97 μs

TABLE VI. Comparison of different SPI solutions based on both, FPGA and GPU
platforms, using OMP103 algorithms, applied for the reconstruction of 2D SPI images:
the FPGA-based solutions yield processing times of 24 μs, with an improvement of
×2.67, while GPU-based architectures yield processing times in the order of 37.5 ms,
an improvement of ×3.4.

FPGA Image size Reconstruction time

Virtex-7 128 × 128 8.97 μs103

n-Nvidia GeFore104 128 × 128 11 ms

module and the module responsible for calculation of the least-
squares solutions. Some of the solutions proposed to speed up the
processing task of the projection module, such as Fujimoto’s matrix-
vector multiplication algorithm, have been reported, as well as the
matrix-inverse-update calculation, to speed up the least-squares cal-
culation module.104 Experimental results show that the implementa-
tion of the OMP algorithm reported in Ref. 85 achieves +40× speed
up running on the GTX480 GPU module, controlled by using an
Intel(R) Core(TM) i7 CPU.103,104 GPU-acceleration architecture is
a good option to apply single-pixel reconstruction 3D imaging to
real-time applications.

The results of comparing different processing times in applica-
tions using GPU platforms, on the one hand, and FPGA modules,
on the other, for SPI reconstruction (see Table VI) show that FPGA-
based architectures are more efficiently than those based on GPU
platforms. During the last few years, the reconstruction of 2D/3D
single-pixel images (see Fig. 17) has been increasingly applying the
ML approach. The GPU based architectures have been tested in

FIG. 17. Number of works reported from 2006 to 2020 with algorithms used for
the reconstruction of single-pixel using compressed sensing (CS) techniques with
120 published and TVLA3 with 5 published. The CS54 methods are more used
for single-pixel, which can be adaptive to the other as machine learning (ML)63

and FSI.60
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applications based on CNN,64 while the FPGA architectures have
been tested for ML-based approaches, although these do not match
the data processing efficiency achieved by GPUs. Due to the fact
that it can be easily reconfigured at will, the FPGA accelerator is
more flexibly if compared to the GPU and allows for implementa-
tion of embedded parallel architectures optimized in terms of clock
cycles for the calculation of matrix operations, such as those used
for least-squares solution calculations. On the other hand, in GPU-
based implementations, kernel parallel operations and shared mem-
ory management85 are possible. Considering the works reported
during the last few years, Fig. 18 shows that both approaches have
been followed hand to hand, with architecture complementing each
other. The efficiency of an SPI system can focus, leaving the spa-
tial resolution and overall quality of the reconstructed single-pixel
image aside, on the total time required for signal collection and
image reconstruction, especially if developed for video streaming
applications, focusing on the elimination of existing bottlenecks in
the data transport mechanisms and seeking to accelerate the process
of generating SPI-3D images.101,105

SPi technique has undergone an impressive evolution in terms
of the system architecture it relies on and different reconstruction
algorithms used for image reconstruction, ranging from L1-magic48

proposed in 2007, the orthogonal matching pursuit (OMP)42 pro-
posed in 2010, the augmented Lagrangian approach and alternat-
ing direction algorithm (TVAL3)42 also proposed in 2010, and
NESTA43,44 proposed in 2011 (see Table II), running on different
processor architectures, highlighting the CS that adapts to DMD
technologies, of which we saw that it is the most used platform in
SPI applications (see Fig. 11). OMP-type algorithms adapt more effi-
ciently in mathematical operations to architectures such as GPUs.
Through the applications of sparsity or Nyquist theories,21 it is pos-
sible to define compressed reconstruction strategies, so it is not nec-
essary to make a complete reconstruction of the image using all the
projection patterns required for HSI and FSI SPI. Using this fact, it is
possible to reduce the reconstruction times simultaneously increas-
ing the efficiency of the acceleration hardware. Based on the data
presented in the publications reporting on systems based on both,
FPGA and GPU platforms, applied to SPI, it can be foreseen that
in the coming years for 3D image applications, it will be necessary

FIG. 18. Number of works reported from 2006 to 2020 with algorithms used for the
reconstruction of single-pixel CS (using the different type of orthogonal matching
algorithm) using hardware acceleration based on FPGA with 31 published and
using the paralleled algorithm in GPU with 31 published; both developments in the
recent decade gone hand to hand.

to merge both integrated solutions in a single platform to opti-
mize both data collection and reconstruction and processing algo-
rithms. At the level of reconstruction algorithms, the evolution of
CS toward interaction with ML can be self-adaptive with the operat-
ing conditions of different test scenarios, improving the reconstruc-
tion algorithm’s efficiency for generation of better quality images
and decreasing processing times to reach continuous-time 3D image
generation.

VII. 3D NIR-SPI-BASED MULTI-SPECTRAL CAMERA
FOR HARSH ENVIRONMENT APPLICATIONS

An improvement suggested for the 3D SPI-based imaging and
ranging system has been the fusion of millimeter-wave RADAR
technologies with ToF integrated solutions embedded into SPI pho-
tometric stereo technique-oriented systems, enabling unmanned
vehicle (UMV) autonomous driving106 [depicted in Fig. 19(a)]. This
hybrid approach allows for continuous-time depth map generation
of the surroundings of UMVs with high spatial resolution of objects
placed in immediate vicinity or at several meters of distance, and
RADAR detected objects placed at much bigger distances, although
with much lower spatial resolutions, with an additional advantage
offered by the possibility of detecting objects across non-metallic
surfaces.107 Due to the atmosphere’s capacity to absorb the wave-
lengths in the near-infrared spectrum, the best option for generation
of single-pixel (or line-sensor based) images for unmanned systems
would be to use a structured illumination scheme of front modu-
lation type with an array of LEDs emitting in the NIR part of the
spectra at 1550 nm wavelengths [depicted in Fig. 19(b)], which is less
sensitive to background noise and undergoes fewer scattering pro-
cesses when in the presence of particles of different sizes present in
fog, rain, snow, or smoke rich environments. The latter will increase
the detection range under outdoor conditions or under low-vision
conditions (scenarios with dust, fog, rain, or smoke), maximizing
the capacity of photometric stereo 3D imaging. A solution is pro-
posed for autonomous driving or flying in unmanned vehicles that
should be optimized in terms of dimensions, weight, and power con-
sumption and should yield processing times of below 30 ms to be
used for continuous-time decision making. For this, parallel pro-
cessing based on GPU platforms should be chosen, in combination
with OMP-based algorithms85 or some of its derivations such as

FIG. 19. The proposed hyper-spectral camera system proposed, with dimensions
of 11 × 12 × 13 cm3, 1.3 kg weight, and power consumption of 25 W: (a) the
front part of the system is shown, where the photodiode, the focal lens with a
focal length of 20 cm, and the Wi-Fi antenna can be observed. (b) The internal
design of the hyper-spectral camera is shown where the GPU unit, the analog-to-
digital converter (ADC), the active illumination source, the photodiode driver, and
the InGaAs SPD can be observed.
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TVAL3,42 or NESTA,44 to achieve processing time between 30 and
60 frames/s.

VIII. UAV APPLICATIONS
Commercial success of UAVs has enabled their use in several

civilian applications, among which the most notable have been criti-
cal infrastructure inspection, aerial video acquisition for cinema, TV
and sport events, and precision agriculture.108 However, UAVs are
expected to be deployed under adequate whether conditions. That
is, pilots seek to operate under moderate low wind currents, avoid-
ing to fly in cluttered spaces and, in particular, avoiding to fly in
cases whether the line of sight could be compromised. Examples
of the latter could be those of flying in the fog, amid smoke (pro-
duced by a fire), or under the rain. While UAV operation heavily
relies on a pilot, the UAV may be locally equipped with sensors,
enabling it to detect obstacles. These sensors could be based on active
pixel acquisition such as stereo RGB cameras, LIDAR, or ToF cam-
eras, including other perception modes not relying on vision, such
as radar or auditory perception,109 which can detect, localize, and
classify the audio source just by hearing its audio signal.

Perception is essential not only to aid human piloting of UAVs,
but it is also a key component for the development of autonomous
UAVs. Hazardous scenarios where humans cannot be physically
present are the opportunity to deploy autonomous UAVs. Repetitive
and tedious flight operations are another opportunity, for instance,
infrastructure inspection, such as warehouse inspection,110 aerial
manipulation,111 or wind turbine inspection.112 Furthermore, one
of the ultimate goals of autonomous UAV is to achieve agile flight
in complex environments113 and in non-urban environments where
GPS cannot be accessed, such as forestry environments.114

Among current perception paradigms, active vision-based are
perhaps the most popular due to the variety of low-cost, power-
efficient, and reduced-size chips commercially available. However,
active vision will become ineffective under harsh environments
where fog, smoke, or rain may rest visibility of the scene. In recent
years, a new paradigm known as event cameras115 has emerged as
an alternative to conventional active vision. Rather than acquiring
chromatic information for every pixel in the image grid, an event
camera acquires information only in those pixels where a change in
intensity has occurred. This enables for the acquisition of a million
of “events” per second while also enabling dynamic range. As it has
been shown in several works, event cameras could be the way to go
in environments with challenging illumination conditions such as
with very low light, bright light, or drastic light changes.

It is too early to claim that event cameras will take over conven-
tional active vision as much as it is still an open question whether
such sensors will cope with heavy smoke or rain. In contrast,
our proposed hyper-spectral system based on SPI aims at extend-
ing UAV sensing capabilities by enabling sensing under the harsh
environment conditions mentioned before. Figure 20 shows an
schematic view of our proposed SPI system mounted on a UAV. Fur-
thermore, we argue that SPI sensing will hugely benefit autonomous
UAVs, whose first challenge is that of being capable of sensing its
surrounding in order to build a map, which is ultimately used for
localization, trajectory planning, and autonomous flight, all of this
in addition to sense-and-avoid capabilities during navigation either

FIG. 20. Schematic view to illustrate the use of our proposed hyper-spectral system
carried by a drone and to perform a measurement of energy level. The source of
noise from the background lighting, distance, and stages of the optical system are
considered.

for static or dynamic objects. Therefore, we argue that SPI sys-
tems will contribute to extend usability scenarios of current UAV
technology.

IX. CHALLENGERS OF THE SINGLE-PIXEL
TECHNOLOGY IN THE FUTURE

In the last decade, with the increase in the development of tech-
nologies as autonomous robots, including self-driving vehicles and
UAVs, at the same time, there has been an evolution in techniques
to improve vision systems. For that development, different types
of sensors such as LIDAR, RADAR, and thermal and IR cameras
are used. The system’s vision SPI is a new paradigm to be used as
sensor vision that can be adapted to different wavelengths from vis-
ible, near-IR, or other long-wavelengths. This advantage allows us

FIG. 21. Overview of new fields for applications of system vision SPI: (a) SPI-
LIDAR29 [Reproduced from Radwell et al., Appl. Phys. Lett. 115, 231101 (2019)
with the permission of AIP Publishing]. (b) VR/AR. (c) SPI-RADAR. (d) SPI-
medical128 [Reprinted with permission from Angelo et al., J. Biomed. Opt. 24,
071602 (2018). Copyright 2018 Author(s), licensed under a Creative Commons
Attribution 4.0 License].
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to operate under foggy, rainy, and low-visibility conditions, only
changing the source of light without modifying the schematic of
configuration SPI. These offer a wide field of applications far from
the typical proof of concept that can be seen in the literature, for
example, in the development of a robust system of obstacle detec-
tion under foggy or rainy condition for application in vehicles116

[depicted in Fig. 21(a)] and the integration with LIDAR technolo-
gies to improve the scene reconstruction quality using an optimized
number of samples based on the principle of SPI.117,118

SPI applications are not limited to vision sensors, but new
applications have also been developed. For example, in VR/AR sys-
tems, we can cite the MEMSEye119 system that works using the
SPI and MEMS mirror in the generation of 3D images [depicted
in Fig. 21(b)] and applications in holography.120 Others applica-
tions that are studied are adaption as the vision system for ROVs or
underwater,121,122SPI-RADAR123 [depicted in Fig. 21(c)], and hyper-
spectral.124,125 This later field of application has great importance in
the medical126 area [depicted in Fig. 21(d)], the space exploration,123

and CubeSat.127

X. CONCLUSIONS
In this work, we have provided a technical review of single-pixel

images, initially reviewing the evolution of the first SPI concept’s
main developments from 1982 to 2020. During this period, it is pos-
sible to see an evolution in both the theory behind the sampling
and processing approaches, the definition of illumination patterns,
and active illumination modulation architectures proposed, con-
ceived for different applications ranging from 2D image generation
to the generation of 3D images and depth maps, combining different
techniques such as ToF or stereo vision.

Resulting from this review, it is clear that single-pixel cameras
and computational GI systems are similar in an optical sense. It
should be clarified that there is a distinction between the two of them
since single-pixel cameras are often based on structured detection
and compressed detection. In contrast, computational GI is often
based on structured lighting.

By carrying out a review of the state of the art and focusing on
3D imaging, we can observe that both techniques go hand in hand.

In some applications, such as THz and x-ray detection, the GI
is better adapted. However, for applications oriented to unmanned
systems, single-pixel has a greater integration capacity, given that
SPI enables for the development of low-cost cameras using LED
arrays for the generation of 2D/3D images at different wavelengths,
even outside the visible spectrum, where focal plane matrix detectors
are not available or are prohibitively expensive. A single detector has
temporal resolution capabilities superior to the focal plane matrix,
which increases the capabilities of the same in IR wavelengths, thus
having a greater sensitivity for 3D imaging applications, which can
complement other technologies such as radar.

From very early in the development of single-pixel images,
ways to reduce the time of the acquired data and the reconstruc-
tion of 3D images have been investigated. For that reason, process-
ing techniques have been developed, including orthogonal bases of
sampling patterns, compression detection, high-speed spatial light
modulation, Machine Learning (ML), wavelet, low-frequency ran-
dom sampling techniques, and Fourier transforms. ML is a new field
of applications that has shown promise in high-speed 3D LIDAR

systems widely used in autonomous vehicles. However, due to
LIDAR’s high-cost, the single-pixel will be the best solution, with
fast processing times and multi-wavelength operating capabilities
that can be adapted to rapid detection and classification applica-
tions, where it is sufficient to detect signals of characteristic intensity
without doing the image reconstruction.

Based on data found in the works we reviewed, the single-
pixel algorithms are leveraged by parallel implementations on FPGA
and GPU, thus enabling 3D applications near real-time (the oper-
ation frequency of 30 Hz or more). Furthermore, we can see an
evolution of the conventional algorithms toward the incorporation
of techniques into the artificial intelligence field such as machine
learning.

Finally, single-pixel offers the possibility to create a new unique
low-cost sensing technology, expanding a new field of research and
applications, in particular, applications requiring low-cost sensors
to be used in outdoor environments with harsh conditions and to
be carried by unmanned systems, for instance, UAVs having to fly
under the rain, fog, or amid smoke produced. Currently, UAVs
struggle to navigate under such environment conditions; however,
SPI could enable a safe navigation by enabling UAVs to sense even
under such adverse conditions. If this is the case, it opens the door
for a plethora of applications.

It is important to keep in mind that SPI is not only limited to
be used as a vision sensor for vehicles or UAVs, but there are other
fields of applications such as medicine and other applications that
are undergoing its integration with RADAR, LIDAR, the field of
space exploration, VR/AR, and ROV system. Therefore, we foresee
that SPI will become a common vision sensor due to its capacity of
integration with other technologies.
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