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Conventional deep learning-based image reconstruction methods require a large amount of training data, which
can be hard to obtain in practice. Untrained deep learning methods overcome this limitation by training a network
to invert a physical model of the image formation process. Here we present a novel, to our knowledge, untrained
Res-U2Net model for phase retrieval. We use the extracted phase information to determine changes in an object’s
surface and generate a mesh representation of its 3D structure. We compare the performance of Res-U2Net phase
retrieval against UNet and U2Net using images from the GDXRAY dataset. ©2024Optica PublishingGroup
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1. INTRODUCTION

In recent times the field of computational imaging has wit-
nessed significant advancements through the use of deep
learning methods [1]. Deep learning has emerged as a promising
approach for solving inverse problems encountered in compu-
tational imaging [2]. Groundbreaking studies have successfully
demonstrated the effectiveness of deep learning for applications
including optical tomography [3], 3D image reconstruction
[4,5], phase retrieval [6,7], computational ghost imaging [8],
digital holography [9–11], imaging through scattering media
[12], fluorescence lifetime imaging under low-light conditions
[13], unwrapping [14,15], and fringe analysis [16].

The deep learning-based artificial neural networks employed
in computational imaging typically rely on a substantial collec-
tion of labeled data to optimize their weight and bias parameters
through a training process [17]. This training enables the net-
work to learn a universal function capable of mapping data
from the object space to the image space. While traditional
optimization methods struggle with this highly non-convex
reconstruction problem, deep learning-based methods excel due
to their nonlinear nature. Moreover, these methods can lever-
age statistical knowledge acquired from large datasets to infer
solutions. Even though this reconstruction process is rapid in
most cases [18], the training procedure can be time-consuming,
lasting several hours or even days, depending on the network
architecture and the volume of data employed. Furthermore,
obtaining a large and diverse training dataset, which is essen-
tial for the effectiveness of neural networks, is challenging.
This is particularly relevant to phase retrieval problems where

procuring an exhaustive collection of ground-truth images for
training is frequently infeasible due to variability in the imaging
apparatus. Limited training data then hampers the network’s
effectiveness and its capacity for generalization [19].

Recent advances in imaging applications have demonstrated
the immense potential of unsupervised learning techniques,
specifically those utilizing untrained networks [20–22]. By
harnessing the inherent structure of neural networks without
the need for training data, remarkable outcomes have been
achieved. Two notable examples of untrained networks are
the deep image prior [20] and deep decoder [23], which have
effectively leveraged the network structure as a prior for image
statistics, even without prior training. This approach involves
employing a deep network with randomly initialized weights
as an image generator to produce the recovered image. The net-
work’s weights are then repeatedly updated using a loss function
that compares the generated image with the input data, such
as a noisy image. This approach has demonstrated remarkable
effectiveness in simulated image denoising [23], deblurring
[24], phase retrieval [6,19], and super-resolution tasks [25].

However, in many computational imaging problems,
the acquired measurements do not directly resemble the
reconstructed image. Instead, a forward model governs the
relationship between the scene and the measurements, incorpo-
rating the underlying physics of the image formation problem.
In the case of phase retrieval, this model constructs the phase of
a sample using a known intensity distribution pair at the object
and measurement planes.

There are a variety of amplitude-based phase retrieval algo-
rithms with varying complexity, generality, and resolution [26],
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including the Fourier-Born and Gerchberg-Saxton methods
[27,28]. The former provides a closed-form solution to the
phase retrieval problem under the assumption that the object
only scatters the light weakly, while the latter is a more general
but iterative method. Iterative phase retrieval algorithms often
face convergence issues because the inverse problem is ill-posed:
the phase profile that reproduces a given set of amplitude mea-
surements is not unique, and minor changes in the measured
data may result in significant uncertainties in the estimated
solution [29,30].

One way to mitigate these challenges is to replace iterative
methods with methods based on gradient descent. While the
phase retrieval problem is typically a non-convex optimization
problem, with many sub-optimal local minima, neural net-
work parameterizations of the solution such as those based on
UNet or other convolutional neural networks can be trained to
obtain good solutions [19,31]. The UNet architecture consists
of an encoder-decoder structure, where the encoder captures
the high-level features from the input intensity data, and the
decoder reconstructs the phase from these features [31]. By
incorporating physics-based constraints and priors into the
network’s design, a physics-enhanced deep neural network
can learn to model the image formation process more accu-
rately. This integration allows the network to exploit the known
physics principles governing the imaging problem, thereby
improving the rate of convergence compared to iterative phase
retrieval methods such as the Gerchberg-Saxton algorithm and
improving the quality and fidelity of the reconstructed images.

In this study, we consider a method for the reconstruction
of 2D and 3D images by combining diffraction models with
convolutional neural networks and mesh estimation of the
phase image [32]. We consider three different neural networks
for solving the inverse problem: UNet [31] and U2Net [33],
which were previously used for unsupervised phase retrieval, as
well as a new architecture called Res-U2Net. We show that the
Res-U2Net-based architecture can achieve better performance
compared to UNet and U2Net due to its ability to capture
finer details of the image. Specifically, Res-U2Net incorporates
additional layers in the form of downsampling and unsampling
blocks, while preserving details with residual connections that
skip some of the layers. To compare the performance of Res-
U2Net against UNet and U2Net we use the GDXRAY [34]
dataset of X-Ray images, which provides dimensional infor-
mation. For the evaluation of the 2D image phase, we utilize
standard metrics, namely no-reference image quality assessment
(NR-IQA) [35], mean squared error (MSE) [36], and skewness.
These metrics provide insights into the performance, processing
time, and quality of the reconstructed 3D images [37].

The outline of this article is as follows: Section 2 briefly
reviews prior works on phase retrieval, including the incorpora-
tion of deep learning-based techniques. Section 3 presents the
architecture of our physics-informed Res-U2Net phase retrieval
model, which we benchmark numerically in Section 4. We
conclude with Section 5.

2. PHASE RETRIEVAL AND DEEP LEARNING

The goal of the phase retrieval problem is to reconstruct an
object’s near field profile ψ estimate from intensity measure-
ments I , given information about the characteristics of the
imaging system, represented by a (possibly nonlinear) operator
A that represents the imaging system, relating the object to the
measured intensities [38,39],

I = |Aψ |2. (1)

The absence of phase information makes the generic inverse
problem challenging to solve [40], as there exist infinitely many
possible solutions that can yield the same set of measured inten-
sities [41],

ψ̃ = argminψ || Ĩ − |Aψ |2||2, (2)

where ψ̃ represents the estimated signal or image that we want
to recover,ψ represents the image whose phase information is to
be retrieved, Ĩ is the measured intensity, and argminψ indicates
that we are looking for the argument (in this case, ψ̃) that mini-
mizes the following expression. Estimation of the signal ψ̃ given
I can be posed as a non-convex optimization problem [42].

In many imaging setups, A will simply be a matrix encoding
the two-dimensional Fourier transform, which forms the basis
for the Fourier-Born and Gerchberg-Saxton methods, among
others. In this case, I = Iz(x , y ) is the intensity in the imaging
plane (x , y ) at a distance z from the object, which is related to
the near fieldψ0(x , y ) via the transfer function Hz,

Iz(x , y )=
∣∣∣F−1
[e−ikz
√

1−λ2(k2
x+k2

y )F [ψ0(x , y )]
∣∣∣2

= |Hzψ0(x , y )|2,

(3)
where k = 2π/λ, λ is the imaging wavelength, and F is the
two-dimensional Fourier transform. In the case of uniform
illumination of a pure phase object, the near field can be written
as ψ0(x , y )= I0e iθ(x ,y ), and the aim is to determine the phase
profile θ(x , y )using Iz(x , y ).

In the case of iterative phase retrieval methods, such as the
Gerchberg-Saxton algorithm, one iteratively updates the esti-
mated image ψ̃ ∈CN×N in the spatial and Fourier domains
[27]. However, these kinds of iteration procedures have several
drawbacks. They tend to stagnate and exhibit slow convergence,
often requiring more than 1000 iterations to reach a solution. In
addition, they are highly sensitive to the initial conditions.

Alternatively, if the object is known to scatter the probe light
only weakly (Born approximation), the near field can be written
asψ0(x , y )≈ I0(1+ iθ(x , y )), and it follows that

Iz(x , y )= I0(1+ 2Re[Hzθ(x , y )]), (4)

allowing the near field to be directly reconstructed from the
Fourier transform of the far-field intensity. For more informa-
tion about Fourier phase retrieval algorithms, we recommend
interested readers to consult Refs. [3,27,28].

To address the limitations of conventional phase retrieval
methods, newer gradient-based algorithms such as Writinger
flow (WF) phase retrieval have been introduced [43], which
solve the phase retrieval problem Eq. (1) using gradient descent
[44],

ψ̃ j+1
= ψ̃ j

−µ j+1
∇ f (ψ̃ j ), (5)
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where ∇ f (ψ̃ j ) represents the first-order gradient of the loss
function and µ j+1 denotes the step size at the current iteration
j . WF offers theoretical guarantees for convergence to the
globally minimal solution. Empirically, a set of 4 to 8 intensity
iterations is usually enough for convergence to the globally
optimal solution. Unfortunately, WF often fails to converge to a
satisfactory outcome when provided with only a single intensity
measurement, limiting its effectiveness in this case unless one
can impose prior constraints on the form of the object.

Recently extensive research has been conducted on phase
retrieval using deep learning-based approaches. These
approaches offer faster, non-iterative inferences compared
to other more time-consuming optimization-based algorithms
[26]. Most of these methods can reconstruct the phase using
a single Fourier intensity measurement without any addi-
tional constraints. This seemingly ill-posed problem can have a
unique solution (with only minor ambiguities) for the original
complex-valued signal if the Fourier intensity measurement is
oversampled by at least twice in each dimension [26,45]. In gen-
eral, deep learning-based unsupervised phase retrieval methods
can be categorized based on whether or not they incorporate the
underlying physics into their networks [46].

The first category of deep learning-based methods involves
using a feedforward network to directly estimate target images
from a Fourier intensity measurement [47]. For instance, Ref.
[48] proposed a two-branch convolutional neural network
(CNN) to reconstruct the magnitude and phase of the 3D
crystal image from an oversampled Fourier intensity measure-
ment. While this approach can demonstrate reasonably good
performance for simple images with limited details, its efficacy
for complex images remains unknown. Other image recon-
struction methods based on conditional generative adversarial
networks [49] and multiple multilayer perceptrons [50] tailored
for Fourier phase retrieval tasks can similarly capture simple
features adequately but give relatively large errors in capturing
finer details [51].

The second category of deep learning-based phase retrieval
methods aims to enhance the quality of reconstructed images
by effectively leveraging the underlying physics into their
models [52]. One such approach incorporates physics infor-
mation through a learnable spectral initialization [53] followed
by a double-branch UNet for reconstruction. However, this
approach requires an additional masking scheme to impose
constraints on the measurement, leading to rather noisy recon-
structed images, even for simple images [54]. Another proposed
method involves the use of multi-layer perceptrons of different
sizes in a cascaded network. In this approach, the intensity
measurement is applied to each multi-layer perceptron to assist
in training and inference [55]. Despite its merits, this approach
struggles to reconstruct fine image details and necessitates a
large network size due to the utilization of multiple multi-layer
perceptrons [56].

To enhance the performance of the neural network model,
it is beneficial to integrate physics-informed principles into a
deep learning framework. This involves training the neural net-
work to effectively learn the inverse mapping from the observed
intensity data Iz(x , y ) to the corresponding near-field phase
profile θ(x , y ) using a forward diffraction model [31,57–59].

The estimated phase profile is then used as input into the diffrac-
tion model to obtain an estimate for the far-field intensity; the
difference between this estimate and the measured intensity
serves as a loss function used to train the network and improve
the phase estimate. UNet, a popular architecture in the field of
image processing and computer vision, can learn the inverse of
the diffraction operator [19,57,60,61].

By integrating a UNet architecture within the phase retrieval
process, we can harness the powerful representational capabil-
ities of deep neural networks while retaining the convergence
characteristics typical of traditional gradient descent-based
phase retrieval algorithms. This UNet-based approach excels
in capturing the complex interactions between intensity and
phase data, rooted in the underlying physics of the problem.
Additionally, the process involves a progressive refinement
aspect, distinct from iterative methods in numerical analysis.
This refinement, occurring over multiple cycles, allows for
gradual improvement of the phase estimate. Such an approach
is particularly beneficial in mitigating the challenges posed
by initial conditions and noise in the intensity data, thereby
enhancing the accuracy of phase retrieval [60].

3. PHASE RETRIEVAL USING RES-U2NET

The untrained phase retrieval process (see Fig. 1) involves apply-
ing a Fourier-based forward model [26], which is defined in
Section 2, to evaluate the input image and obtain the image
plane intensity Iz(x , y ). This diffraction model is then used as
input for an untrained neural network that estimates the near-
field phase θ̃ (x , y ). We evaluate three different neural networks:
UNet, U2Net, and Res-U2Net. The neural network is trained
by comparing the intensity profile Ĩz(x , y ) obtained from the
diffraction model A, specified by Eq. (3) or Eq. (4), using the
estimated phase θ̃ (x , y ), and comparing against the measured
far-field intensity Iz(x , y ). The neural network is trained by
minimizing the mean square error (MSE) between the measured
and estimated intensities, ||Iz(x , y )− Ĩz(x , y )||, following the
approach introduced in Ref. [6]. This minimization of the cost
function via gradient descent allows for the gradual refinement
of the estimated phase until a desired accuracy, as measured by
the difference between subsequent iterations, is obtained.

Fig. 1. Schematic of the phase retrieval process. An intensity image
Iz(x , y ) is fed into a neural network, returning an estimate of the
near-field phase θ̃ (x , y ). Diffraction model Hz converts the estimated
near-field phase to an estimated far-field intensity profile Ĩz(x , y ). The
mean square error (MSE) between Iz(x , y ) and Ĩz(x , y ) serves as a loss
function for optimizing the parameters of the neural network.
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Fig. 2. Res-U2Net architecture: (a) U2Net model configuration, based on a multi-scale sequence of Res-UNet models, (b) Res-UNet model, the
encoder extracts features using convolutional layers (Conv2D) with batch normalization, ReLU activation (ResBlock), and spatial resolution reduc-
tion via max pooling (MaxPooling2D). This is followed by a decoder assigning phases to the features by upsampling using transpose convolutions
(Conv2DTranspose) with skip connections. Residual connections link the encoder and decoder layers to improve the training performance. Finally, a
1× 440× 440 convolutional layer generates the segmentation mask, resulting in the network output.

A. Res-U2Net Structure

The Res-U2Net architecture, as shown in Fig. 2, is a sophisti-
cated evolution of the UNet and Res-UNet models, particularly
designed for image segmentation tasks [31]. This architecture
innovatively incorporates residual connections at various stages,
enhancing information exchange and gradient flow during
training. Structurally similar to UNet, it includes both down-
sampling and upsampling processes. The downsampling path
consists of convolutional layers with batch normalization and
ReLU activation, followed by max-pooling layers. Conversely,
the upsampling path employs transposed convolutional layers
to enlarge the feature maps. A key advancement of Res-U2Net
over UNet is the amalgamation of a series of encoder/decoder
modules that combine the Res-Unet model (refer to Fig. 2) with
a series of stacked U-Nets. This configuration, featuring layers
for both downsampling and upsampling, promotes more effi-
cient feature transmission and mitigates the issue of vanishing
gradients [62].

Res-U2Net has shown exceptional capabilities in various
image segmentation tasks, surpassing the original UNet’s per-
formance. While its design is primarily for image segmentation,
this does not directly imply its effectiveness in phase retrieval
tasks, since phase retrieval often involves complex patterns
rather than areas of near-uniform phase values, challenging
the assumption that segmentation-focused methods would
automatically excel here. Nevertheless, the U-Net architecture
has been successfully applied to the phase retrieval [6]. However,
we aim to explore new possible architectures using familiar ones.

Res-U2Net performs the following standard sequence of
operations [see Fig. 2(a)]:

1. Res-UNet: The architecture applies a series of Res-UNet
blocks in parallel, allowing the network to process and
extract features at different scales or levels of abstraction.

2. Combination: The features extracted by the parallel
Res-UNet blocks are combined to produce a richer set of
features.

In Fig. 2(b), it is shown how Res-UNet carries out the encoder
and decoder operations:

1. Feature Extraction (Encoder layer): This part of the model
uses convolutional layers, batch normalization, and ReLU
activation functions to process the input image. The convo-
lutional layers are designed to extract features by applying
filters that capture spatial hierarchies in the image. As the
input passes through these layers, it is transformed into a
set of feature maps that represent different aspects of the
input. The batch normalization helps in stabilizing the
learning process by normalizing the input of each layer, and
the rectified linear unit (ReLU) activation function intro-
duces non-linearity, allowing the model to learn complex
patterns.

2. Spatial Resolution Reduction: Max pooling is used after
convolutional blocks to reduce the spatial dimensions
of the feature maps. This operation helps in making the
representation smaller and more manageable, and it also
introduces some level of invariance to small translations in
the input image.

3. Upsampling (Decoder Layer): The decoder part of the
network uses transpose convolutions (also known as up-
convolutions or deconvolutions) to increase the spatial
dimensions of the feature maps. This process is essential for
tasks like image segmentation, where the goal is to produce
an output image that is the same size as the input image.

4. Skip Connections: These connections are used to combine
feature maps from the downsampling path with those from
the upsampling path. By doing so, the network can leverage
both high-level semantic information and low-level spatial
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information, which is crucial for accurately reconstructing
the output.

5. Residual Connections: After concatenating feature maps
from different layers, additional convolutions are applied,
and their output is added element-wise to the input of the
concatenation. This creates a residual block (Resblock),
which helps mitigate the vanishing gradient problem and
allows for deeper networks by promoting more effective
backpropagation of gradients.

6. Upsampling and Concatenation: This step repeats the
process of upsampling and combining feature maps from
different layers of the network. It ensures that as the spa-
tial dimensions are restored to match the input size, the
network progressively refines the details of the output.

7. Segmentation Mask Generation: Finally, we introduced a
convolutional layer with a sigmoid activation function to
generate the final segmentation mask, serving as the output
of the neural network. This step converts the input vector
into a matrix, containing the estimated phase information.
The resulting matrix matches the dimensions of the input
image, specifically a size of 1× 440× 440.

B. 3D Phase Reconstruction

We utilized the unified shape-from-shading model (USFSM) to
perform the 3D reconstruction of the estimated image obtained
through phase retrieval. The USFSM approach constructs
three-dimensional representations by analyzing the spatial
intensity variations present in the two-dimensional recov-
ered image [63]. To extract depth information from the phase
retrieval image, which corresponds to the surface points of the
scene, we employed the fast-sweeping method. This method
employs the Lax–Friedrichs Hamiltonian technique [64] to
solve for the surface, utilizing an iterative sweeping strategy
based on the fast sweeping scheme described in Ref. [32]. An
example is shown in Fig. 3.

4. RESULTS

We carried out numerical calculations to compare the per-
formance of phase retrieval using Res-U2Net against the UNet
and U2Net networks, considering Fourier and Fourier-Born
diffraction models and four 440× 440 pixel images from the
GDXRAY dataset, shown in Fig. 4. In all cases, we limit the
maximum number of training iterations to 1000. Training
was performed using the Keras framework in Python [65], and
a stopping criterion with a network error tolerance of 10−4.
The calculations were executed using an NVIDIA GTX 1080
graphics processing unit (GPU).

Fig. 3. 3D phase retrieval: (a) 2D Ray-X test image, (b) 2D phase
retrieval estimate, and (c) resulting 3D mesh.

Fig. 4. Examples from the GDXRAY dataset of 440× 440 pixel
images.

Fig. 5. 2D Fourier phase retrieval using (a) UNet, (b) U2Net, and
(c) Res-U2Net.

The performance of the trained models was evaluated based
on the quality of the reconstructed 2D images and 3D meshes.
The configurations of the neural network and diffraction mod-
els were analyzed to determine the most efficient approach
in terms of image, processing time, and mesh reconstruction
quality.

A. 2D Phase Retrieval

Figures 5 and 6 present the estimated phase profiles obtained
from the different neural networks using the Fourier and
Fourier-Born diffraction models, respectively. The image
processing times ranged from 0.5 to 5 s for images of differing

Fig. 6. 2D Fourier-Born phase retrieval using (a) UNet, (b) U2Net,
and (c) Res-U2Net.



Research Article Vol. 41, No. 5 / May 2024 / Journal of the Optical Society of America A 771

Table 1. Performance of 2D Phase Retrieval Using
UNet, U2Net, and Res-U2Net Quantified Using
Blind/Referenceless Image Spatial Quality Evaluator
(Lower Is Better) [66]

Method UNet U2Net Res-U2Net

Fourier 16.37 11.67 9.63
Fourier-Born 15.17 9.04 8.12

Table 2. Performance of 2D Phase Retrieval Using
UNet, U2Net, and Res-U2Net Quantified Using Natural
Image Quality Evaluator (Lower Is Better) [67]

Method UNet U2Net Res-U2Net

Fourier 3.23 2.89 1.69
Fourier-Born 2.62 2.53 1.41

complexity. The networks differ in the detail and contrast of the
phase images produced.

To quantify the performance of the phase reconstruction we
used NR-IAQ, considering first the Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) method [66]. This
method assesses the statistical properties of an image to estimate
its quality, with lower scores indicating better image quality
and higher scores indicating poorer quality. The BRISQUE
scores presented in Table 1 show that Res-U2Net consistently
outperforms UNet and U2Net for both the generic Fourier
imaging and the special case of weak phase contrast (Fourier-
Born approximation). Res-U2Net consistently achieves the
lowest BRISQUE scores, indicative of its superior ability to
produce images with the highest perceived quality.

Next, we consider the Natural Image Quality Evaluator
(NIQE) [67], which assesses factors such as texture, sharpness,
and entropy. Higher values of NIQE indicate images with lower
perceptual quality, while lower values suggest higher quality. A
similar trend to BRISQUE is visible in the NIQE scores pre-
sented in Table 2. Once again, Res-U2Net achieves the lowest
scores across all image types, signifying superior image quality
and enhanced contrast levels, as can be seen in Figs. 5 and 6.

B. 3D Retrieval Phase

Next we applied the shape-from-shading model (USFSM) to
reconstruct 3D images from the 2D phase profiles obtained
from the Fourier and Fourier-Born diffraction models. The
resulting images are presented in Figs. 7 and 8.

To quantify the performance of the 3D image reconstruction,
we calculated the mean squared error (MSE) and skewness [36],
which defines the symmetry of the 3D shapes. A skewness value
near 0 indicates the best mesh, and a value close to 1 indicates a
completely degenerate mesh [68] between the 3D mesh of the
normalized test images (Fig. 4) and the 3D mesh obtained from
the phase reconstruction. The results can be found in Tables 3
and 4.

Inspecting the MSE values, UNet has a somewhat worse
performance compared to the other two neural networks for
both diffraction models. Moving on to the skewness values,
again UNet has the worst performance, indicating lower spatial
resolution in the reconstructed 3D image, limiting its ability to

Fig. 7. 3D Fourier phase retrieval images obtained using (a) UNet,
(b) U2Net, and (c) Res-U2Net.

Fig. 8. 3D Fourier-Born phase retrieval images using (a) UNet,
(b) U2Net, and (c) Res-U2Net.

Table 3. Performance of 3D Image Reconstruction
from the UNet, U2Net, and Res-U2Net Phase Images
Quantified by the Mean Squared Error (Lower Is Better)

Method UNet U2Net Res-U2Net

Fourier 0.150 0.059 0.056
Fourier-Born 0.270 0.062 0.053

Table 4. Performance of 3D Image Reconstruction
from the UNet, U2Net, and Res-U2Net Phase Images
Quantified by the Skewness (Lower Is Better)

Method UNet U2Net Res-U2Net

Fourier 0.545 0.1460 0.1140
Fourier-Born 1.145 0.0100 0.0049

discern surface details of the tested objects, as is visible in Figs. 7
and 8. Meanwhile, U2Net and Res-U2Net exhibit significantly
better skewness values for the Fourier-Born diffraction model.
We also note that methods incorporating physics-based forward
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diffraction models tend to yield lower skewness values compared
to other neural network models.

5. CONCLUSION

In this study, we examined the use of physics-informed deep
learning techniques for phase retrieval, considering the spe-
cific example of phase retrieval from X-ray images. Our main
objective was to assess the efficacy of these methods in 2D and
3D imaging. We conducted a thorough analysis of three neural
networks—UNet, U2Net, and Res-U2Net—to determine
their suitability for unsupervised Fourier phase retrieval in X-ray
imaging. Our findings reveal significant improvements in both
2D and 3D reconstructions, with processing times ranging
from 0.5 to 5 s. Notably, we observed enhanced background
details and improved skewness scores in 3D meshes generated
from GDXRAY test images. Res-U2Net, in particular, exhibited
promising potential as a robust method for producing high-
quality 2D Fourier phase retrieval images. On the other hand,
UNet may require further optimizations to match the effec-
tiveness of its counterparts. This investigation highlights the
synergy between neural network models and physics-based for-
ward models, offering an effective approach for phase retrieval
tasks in 3D mesh normalized test images.

Future research should focus on exploring additional evalu-
ation metrics and refining these models to optimize their
performance in specific imaging applications. For example,
the integration of generative adversarial networks (GANs) may
be used to increase the network’s robustness against noise and
decrease the number of artifacts incorporated during the image
phase estimation [49]. Res-U2Net can be adapted for phase
retrieval of images in other spectral bands, and it can also be
applied to other imaging problems found in different fields,
such as biomedical imaging.
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