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Emerging vision technology, particularly Single-Pixel 
Imaging (SPI) cameras, has garnered significant atten-
tion in recent years. This work provides an overview of 

the advancements and applications of this innovative imaging 
technique. SPI utilizes improved reconstruction algorithms, 
enabling the reconstruction of images from compressed mea-
surements obtained using a single detector element. The 
miniaturization and integration of this technology have led to 
its incorporation into compact and portable devices, expand-
ing its range of potential applications. Real-time imaging and 
video capture capabilities have been achieved, allowing for 
dynamic scene capture and analysis. Enhanced sensitivity and 
resolution have been achieved through novel hardware and 
computational techniques. Deep learning approaches have 
been employed to further enhance the imaging capabilities 
and extract meaningful information from the acquired data. 
Medical imaging, biophotonics, object recognition, tracking, 
remote sensing, Earth observation, industrial inspection, and 
quality control are among the diverse areas benefiting from 
this technology. The continuous advancements in SPI cameras 
hold great promise for revolutionizing various fields and un-
locking new opportunities for imaging and analysis.

Evolution of Single-Pixel Imaging (SPI) 
Over Time
The concept of SPI originated from the idea of modulating a 
light field and capturing the modulated light using a single 
photodetector. In 1970, Decker introduced the application of 
the Hadamard Transform from Image Scanning [1]. Later, in 
1982, Ben-Yosef and N. Sirat documented this concept in their 
work, suggesting the utilizationof the elastic piezoelectric op-
tical effect in crystals for light modulation [2]. However, at that 
time, the construction of small and numerous crystals was 
not readily accessible. The authors presented a proof of con-
cept using a few crystals to reconstruct the image of an object. 
Nearly 25 years later, the first Single-Pixel Camera (SPC) was 
proposed and successfully demonstrated at Rice University. 
This approach was based on the pioneering idea of Com-
pressed Sensing (CS) introduced by Donoho in 2006, which 

were also independently proposed by Takhar et al. in the same 
year. The SPC used random patterns to reconstruct an image 
through a minimization algorithm [3].

In 2008, Duarte redefined the architecture of the SPI system 
in their work [2], incorporating a light source element, a spa-
tial light modulator (SLM), and a detector element (SPD). They 
utilized the CS approach proposed by Donoho in 2006. In the 
same year, Duarte introduced the first color image processing 
method by using an RGB filter with a single photodiode. The 
method involved three consecutive measurements with dif-
ferent RGB filters to form a color pattern. In 2013, Welsh et al. 
improved upon Duarte's method by introducing a dichroic 
beam splitter, which separated white light into three outputs 
(red, green, blue) [2]. They placed a different photodiode at 
each output to capture the light, allowing the restoration of 
an image by combining the separate color channel outputs. 
SPI found various applications, including 3D imaging, video 
streams, hyperspectral imaging (combining infrared and vis-
ible range images), and the integration of TOF and radar 
systems.

Subsequent to these advancements, new methods emerged 
to enhance the efficiency and accuracy of image reconstruc-
tion from photodetector outputs. These methods also involved 
strategies to generate illumination patterns and capture them 
more effectively. In 2013, Sun et al. proposed one of the first 
approaches for generating 3D images based on SPI [2]. They 
utilized a projector to illuminate the scene with random pat-
terns and placed four photodetectors at different angles to 
measure the time. In 2014, Dai et al. introduced an adaptive 
scanning strategy based on illumination patterns generated 
the wavelet transforms [2]. They employed the Wavelet in-
verse transform for image recovery, which became a reference 
for generating depth maps in systems utilizing TOF principles. 
Zhang et al. in 2015 were inspired by Dai work and used illu-
mination patterns generated using the Fourier transform [2].  
They employed the inverse Fourier transform on the photode-
tector output signals for image recovery. This concept formed 
the basis for subsequent video sequence generation and 3D 
applications using SPI. These applications utilized temporal 
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redundancy to reduce the number of processing steps required 
for reconstructing depth maps, enabling real-time video 
streaming.

Recent advancements in SPI–type systems focused on 
approaches that eliminate the need for lenses for light structur-
ing. For example, the developments of PicoCam and FlatCam, 
presented in 2017, showcased lensless imaging. Furthermore, 
emerging technologies such as carbon nanotubes and gra-
phene were employed in photodetectors. In 2018, LED arrays 
were proposed as a cost-effective alternative to SLMs. Other 
developments included the application of deep learning for 
image recovery in 2019 and hyperspectral imaging using the 

SPI approach in 2020. Fig. 1a and Fig. 1b provide a timeline of 
various developments, including modulation technologies, 
sampling and processing schemes, from 1982 to 2000, used in 
SPI systems [2].

The Single-Pixel method marks a revolutionary shift from 
traditional approaches in adapting diverse wavelength bands 
for various applications. Unlike conventional techniques that 
employ arrays of pixels, the Single-Pixel method ingeniously 
utilizes a solitary pixel to capture and process complex spec-
tral information. This breakthrough hinges on the concept of 
CS, harnessing the pixel's ability to mathematically recover 
intricate spectral data. This innovation proffers unparalleled 
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Fig. 1. Timeline showing the different developments based on single-pixel imaging. (a) Structured detection. (b) Structured illumination.
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versatility and efficiency. By swiftly alternating through 
wavelengths, the Single Pixel maximizes resource alloca-
tion while minimizing noise and redundancy. Consequently, 
it excels in diverse applications such as medical imaging, re-
mote sensing, and industrial quality control. Its adaptive 
nature allows seamless customization for specific wave-
length requirements, eliminating the need for specialized 
detectors for each band. Moreover, the Single-Pixel method 
transcends the limitations of traditional methods, which are 
often cumbersome and cost-prohibitive due to intricate fabri-
cation processes and bulky arrays. With its capacity to swiftly 
adapt and its potential for compact and lightweight design, 
this method opens doors to portable, multipurpose devices 
for various industries. In essence the Single-Pixel method 
emerges as a trailblazing technique, redefining the landscape 
of wavelength band adaptation.

Single-Pixel Image Reconstruction
SPI operates on the principle of spatial modulation of light, 
which involves projecting a series of structured illumination 
patterns onto the object to be imaged. These patterns are cre-
ated using light modulation devices like SLM, Digital Micro 
Device (DMD), or similar modulators (Table 1). The modu-
lated light reflected by the object is then detected using a lens 
system to focus the light onto a single photodiode. The photo-
diode produces an output voltage signal that corresponds to 
the intensity of the detected light. The relationship between the 
structured illumination pattern and the light signal reflected 
from the object, which is subsequently captured by the photo-
diode, can be described by (1) [4]:
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where (x, y) represents the spatial coordinates in the system. 
The reflectivity of the illuminated object is denoted by O, 
while φi represents the i-th structured pattern emitted in the 
sequence. The output of the i-th single-pixel photodetector 
measurement corresponding to φi is represented by Si.

In addition, α is a factor that describes the optoelectronic 
response of the photodetector (Fig. 2). The size of the final re-
constructed image is given by M × N pixels, which applies 
to both the object being imaged and the number of projected 
patterns. By utilizing the definition of each structured illumi-
nation pattern projected and the output voltage signal from 
the photodiode in response to these patterns reflected by the 
illuminated object, a virtual image of the object can be recon-
structed. The reconstructed image I is directly proportional to 
the object reflectivity O. Therefore, the reconstructed object im-
age can be obtained by applying (2) [4]:
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In this context, the reconstructed image is determined im-
age is determinate by the inner product of the output voltage 
signal acquired during each measurement and the correspond-
ing structured pattern used to obtained it. SPI employs spatial 
light modulation and can be implemented through two dis-
tinct approaches (Table 2) [2]: structured detection scheme, 
illustrated in Fig. 2a, where structured illumination is applied; 
and a structured illumination scheme, depicted in Fig. 2b, 
where structured detection is employed. In the structured illu-
mination setup, the arrangement involves positioning a light 
modulation device in front of the object to be captured. Typi-
cally, a white light source illuminates the SLM which generates 
a specific illumination pattern. This pattern is then projected 
onto the target object through a lens, effectively creating struc-
tured illumination stimuli. The back-scattered light reflected 
by the illuminated object is captured by a bucket detector.

Literature has documented six scanning and sampling 
strategies suggested for reconstructing single-pixel images. 
These strategies include: Computational Ghost Imaging (CGI), 
Compressive Sensing Ghost Imaging (CSGI), Hadamard Sin-
gle-Pixel Imaging (HSI), Wavelet Single-Pixel Imaging (WT), 
Fourier Single-Pixel Imaging (FSI), and Machine Learning Sin-
gle-Pixel Imaging (ML) [2].

Computational Ghost Imaging
Computational Ghost Imaging (CGI) [2] is a popular technique 
used to gather spatial information about an unknown target. 
It involves the generation of random patterns using spatial 
light modulation, as shown in Fig. 3a. These patterns are typi-
cally binary, allowing for high-speed generation using a DMD. 
CGI offers several advantages, including easy deployment, 
low cost, robustness against noise and scattering, wide spec-
tral range operation, and inherent encryption of patterns [2].

Compressive Sensing Ghost Imaging
Compressive Sensing Ghost Imaging (CSGI) [2] is an in-
novative imaging technique that combines the principles 
of compressive sensing and ghost imaging to obtain high-
quality images with fewer measurements (Fig. 3b). Unlike 
traditional imaging methods that rely on densely sampling 
the entire scene, CSGI leverages the concept of sparsity to 

Table 1 – Summary of modulation technology [2]

Technology Advantage Disadvantage

LC-SLM
Grayscale 

modulation and 
programmable

Slow modulation 
and low power 
endurance

DMD
Faster than 

LC-SLM and 
programmable

 Binary modulation 
and not fast 
enough

LED array
Much faster than 

DMD and 
programmable

Binary modulation 
and structured 
illumination only 
Random

Pseudo-
Thermal

Much faster than 
DMD and 
controller

Modulation and 
complicated 
manufacturing
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capture images using significantly fewer measurements. In 
CSGI, a scene is illuminated with a random or structured light 
pattern, and a single-pixel detector captures the reflected or 
transmitted light. The detector records the intensity of the light, 
but not its spatial information. However, by exploiting the cor-
relation between the illumination pattern and the recorded 
measurements, CSGI can reconstruct the image of the scene.

Hadamard Single-Pixel Imaging
The Hadamard pattern, known as the Wang pattern in the 
referenced study [2] is widely used in the re-construction 
SPI. Its popularity stems from its orthogonal Properties, as 
shown in Fig. 3c. To generate a Hadamard matrix, a square 
matrix is  initially defined, where the elements are either +1 or 
–1, with two distinct rows agreeing on exactly n/2 positions 
and disagreeing on the remaining n/2 positions. The gener-
ated matrix, denoted as H, must satisfy the condition HHT 
= nI, where T represents the transposition of matrix H, I is an 
identity matrix, and n denotes the order of the matrix. The 

Hadamard matrix can be constructed using the Kronecker 
product [2].

Wavelet Single-Pixel Imaging
Wavelets, which are mathematical functions, are used to 
map data onto different frequency components with varying 
scale resolutions. Compared to the Fourier method, wavelet 
transform (WT) offers advantages when dealing with discon-
tinuities [2]. In this context, the Haar wavelet is often chosen 
as it is the simplest wavelet. The Haar wavelet is characterized 
by a binary function and a 2D matrix. To implement the Haar 
wavelet, two light frequencies are used to represent the values 
+1 and –1. The image can be reconstructed using the inverse 
wavelet transform (Fig. 3d).

Fourier Single-Pixel Imaging
In the process of acquiring and reconstructing object images, 
FSI (Fourier Spatial Imaging) utilizes the Fourier transform, as 
mentioned in Zhang’s study [2]. By taking the Fourier trans-
form of the object image, FSI obtains a set of coefficients, which 
are depicted in Fig. 3e as Fourier coefficients. Each coefficient 
represents the weight assigned to a distinct Fourier basis pat-
tern, often referred to as a “sinusoidal pattern” or “fringe 
pattern.”

Machine Learning Single-Pixel Imaging
The most recent approach in image reconstruction is the uti-
lization of machine learning techniques, specifically deep 
learning in a convolutional neural network (CNN) [2]. This 
method, referred to as the machine learning-based SPI, recon-
structs images with fewer measurements compared to other 
traditional techniques like Orthogonal Sampling or the Ghost 
Imaging Technique. By incorporating Graphics Processing 
Units (GPUs) in CNN [5],[6], the computational capabilities 
are significantly enhanced, surpassing those of conventional 
computer processors. Therefore, combining CNN with the 
CGI approach allows for image reconstruction using minimal 
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Fig. 2. Two different approaches applied to single-pixel imaging. (a) Structured detection; (b) Structured illumination.

Table 2 – Summary of single-pixel imaging system 
architectures [2]

Architecture Advantage Disadvantage

Focal plane 
modulation

Active or passive 
imaging

Limited choice on 
modulation

Structured light 
illumination

More choices 
for active 
illumination

 Active imaging 
only

Rotating
High power 

endurance and 
cheap

Not programmable 
and random 
modulation only

Customized 
diffuser

High power 
endurance 
and can be 
customized

Not programmable 
and complicated 
manufacturing
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measurements. This approach is particularly advantageous in 
applications where full image reconstruction is unnecessary 
for object detection and classification. Additionally, SPI has the 
ability to identify rapidly moving objects, further highlight-
ing its benefits. By employing a CNN, image reconstruction 
with reduced samples can be integrated into the control sys-
tem of autonomous vehicles, enabling image-free classification 
sensing schemes. Fig. 3f illustrates the CNN used for image 
reconstruction.

Algorithms for Single-Pixel Imaging 
Reconstruction
In recent years, the field of SPI reconstruction has witnessed 
significant advancements with the utilization of deep learn-
ing methods. These methods employ neural networks to 
tackle the problem of SPI reconstruction, providing promis-
ing results. Fig. 4 showcases the various algorithms proposed 
in the literature for SPI reconstruction. These algorithms can 
be categorized into three main types based on their iteration  
approach [2]. The first category encompasses the non-iterative  
methods, denoted as DGI. These methods utilize deep neu-
ral networks to directly reconstruct the SPI without iterative 
refinement. By leveraging the power of deep learning, these 
algorithms are able to learn complex mappings from input 
data to the desired output. The second category comprises 
the linear iterative methods, which incorporate deep learning 
principles into iterative algorithms such as Gradient Descent 
(GD), Conjugate Gradient Descent (CGD), Poisson maximum 
likelihood method, and Alternating Projections (AP). This  
algorithm type employs both CGI and CSGI methods for its 

application. By integrating deep learning techniques into these 
traditional iterative approaches, enhanced performance and 
faster convergence can be achieved. Lastly, the third category 
encompasses the nonlinear iterative methods that methods in-
clude the sparse representation method and Total Variation 
(TV) and CS [2]. These algorithms are implemented in DL, WT, 
FSI and HSI methods. It was observed that CS and TV methods 
require only a small number of samples for SPI reconstruction. 
On the other hand, DGI, GD, and Poisson algorithms neces-
sitate a higher sampling ratio exceeding 1. Notably, CS and 
TV algorithms demonstrate convergence even at a sampling 
rate as low as 0.8. It is important to note that during the recon-
struction process, some observation artifacts and noise may be 
present [2]. By leveraging the representation capabilities these 
algorithms can effectively model the nonlinearity present in 
SPI reconstruction. Overall, the integration of deep learning 
methods into SPI reconstruction has opened up new avenues 
for improved accuracy and efficiency in reconstructing SPIs. 
These approaches have demonstrated remarkable potential in 
addressing the challenges posed by SPI reconstruction, show-
casing the power of deep learning in this domain.

Diverse System Architectures for 
Assessing Single-Pixel Imaging
The evaluation of different system architectures used for 
generating single-pixel images reveals limitations in con-
ventional CPU-based systems, such as long signal collection 
and image reconstruction times. To overcome these limita-
tions, alternative approaches involving field-programmable 
gate-arrays (FPGA) and embedded GPU devices have been 

Groundtruth DGI GD CGD Poisson AP CS TV

(a)

(b)

(c)

Fig. 4. The SPI simulation results for various algorithms were analyzed at different sampling ratios: (a) Sampling ratio=0.2, (b) Sampling ratio=0.8 and  
(c) Sampling ratio=3. 
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explored [2]. FPGA-based solutions improve hardware per-
formance through efficient memory access management 
and pipeline architectures, while some FPGA systems uti-
lize SDRAM for faster data transport. Computational cost 
is another important consideration, and algorithms like or-
thogonal correspondence search (e.g., Orthogonal Matching 
Pursuit [5]) are applied for image reconstruction but can 
be time-consuming. GPU platforms are well-suited for im-
plementing compressed sensing algorithms in parallel, 
although bottlenecks can occur in certain modules [6]. Vari-
ous techniques, including matrix-vector multiplication and 
matrix-inverse-update calculations, have been proposed to 
speed up these modules. FPGA-based architectures generally 
demonstrate better efficiency compared to GPU platforms for 
SPI reconstruction. However, GPU platforms have been uti-
lized for machine learning approaches, albeit with low data 
processing efficiency compared to FPGA [2]. FPGA offers 
flexibility and can be reconfigured easily, making it suitable 
for optimized parallel architectures and matrix operation cal-
culations. On the other hand, GPU implementations allow 
for kernel parallel operations and shared memory manage-
ment. Both FPGA and GPU architectures have been used in 
conjunction, complementing each other in recent works. The 
efficiency of a Single-Pixel Imaging system depends on mini-
mizing signal collection and reconstruction times, especially 
for real-time applications and video streaming. Improving 
data transport mechanisms and accelerating the generation of 

Single-Pixel 3D images are key focus areas for enhancing sys-
tem performance [2].

Challenges Faced by Single-Pixel 
Imaging Technology
Over the past decade, there has been a notable surge in the 
advancement of various technologies such as autonomous 
robots, self-driving vehicles, and unmanned aerial vehicles 
(UAVs). Concurrently, there has been significant progress in 
enhancing vision systems through evolving techniques. To 
facilitate this development, a range of sensors, including Li-
DAR, RADAR, thermal sensors, and infrared (IR) cameras, 
have been utilized [7]. A novel approach in the realm of vi-
sion systems is the employment of the SPI system [2]. This 
paradigm shift enables the sensors to adapt to different wave-
lengths, such as visible light, near-infrared (IR), and even 
long-wavelengths. The inherent advantage of this adapt-
ability is its ability to operate effectively in adverse weather 
conditions such as fog, rain, and situations with low visibility  
(Fig. 5). By simply changing the source of light without alter-
ing the SPI configuration, the system can continue to function 
optimally. The potential applications of SPI extend far beyond 
the confines of mere proof of concept, as often seen in existing 
literature. One such application is the development of a robust 
obstacle detection system specifically designed for vehicles 
operating under fogy or rainy conditions [7] (Fig. 5). Addition-
ally, SPI can be integrated with LiDAR technologies to enhance 

Fig. 5. Showcases an illustrative example of the potential future applications where single-pixel camera infrared technology excels by enhancing its image-
capturing capabilities under various challenging lighting and scattering conditions. This advancement proves especially valuable in complex settings like urban or 
forest environments.
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the quality of scene reconstruction. By optimizing the number 
of samples based on the SPI principle, a more accurate and effi-
cient scene reconstruction process can be achieved [2].

Integrating Deep Learning Models into 
SPI Technology
SPI technology has emerged as a powerful technique for cap-
turing images using a single-pixel detector and structured 
illumination patterns. This innovative approach has opened 
up new possibilities in various applications, ranging from 
object detection [8], segmentation to tracking [8], and depth 
mapping [9] (Fig. 6). Recent advancements in deep learning 
models have further enhanced the capabilities of SPI, enabling 
more accurate and efficient image reconstruction and analysis. 
One notable concept applied to SPI technology is the Single-
Pixel Object Detection (SPOD) [8] technique. By leveraging 
deep learning algorithms, SPOD enables the identification and 
localization of objects within a scene using only SPI measure-
ments. This approach proves especially useful in scenarios 
where conventional imaging methods face challenges such as 
low light conditions or limited hardware resources. Segmen-
tation image SPI is another application of deep learning in SPI 
technology [9]. By training neural networks on segmented 
images reconstructed from single-pixel measurements, it 
becomes possible to extract precise object boundaries and gen-
erate high-quality segmented images. This enables improved 
object recognition and analysis in diverse fields, including 
medical imaging and autonomous driving [2].

Deep learning models have also made significant con-
tributions to tracking objects using single-pixel imaging. By 

employing convolutional neural networks (CNNs) to learn 
object motion patterns from reconstructed single-pixel mea-
surements, tracking algorithms can accurately follow objects 
in dynamic scenes, even under challenging conditions such as 
occlusions or cluttered backgrounds. This paves the way for 
advanced object tracking applications in surveillance, robot-
ics, and augmented reality. Depth mapping using single-pixel 
imaging is another area where deep learning techniques play 
a vital role. By training neural networks on large datasets of 
single-pixel depth measurements and corresponding ground 
truth depth maps, it becomes possible to generate accurate 
depth maps from sparse measurements. This has implications 
for various fields, including 3D reconstruction, virtual reality, 
and autonomous navigation.

Integrating Deep Learning models into SPI technology  
extends beyond traditional imaging applications. For instance, 
the combination of single-pixel imaging and NeRF (Neural  
Radiance Fields) [10] enables the reconstruction of de-
tailed 3D human pose estimation [11], objects, and 4D 
spatial-temporal data from limited measurements [12]. This 
advancement finds applications in fields such as virtual try-on, 
computer graphics, and telepresence. Furthermore, the fusion of  
hyperspectral imaging and high-speed video with single-pixel 
imaging allows the acquisition of multispectral information 
in dynamic scenes [13]. Deep learning algorithms can be em-
ployed to fuse the captured data, enabling improved analysis 
and understanding of complex scenes, such as environmen-
tal monitoring or remote sensing applications. Deep Learning 
models also contribute to improving the quality of SPI. By le-
veraging concepts such as Deep Image Prior (DIP) [14] and 
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Fig. 6. Discover a new era in imaging as Deep Learning Models seamlessly merges with SPI Technology, drawing upon the insights from [8]–[9].
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diffusion models [15], it becomes possible to enhance low-
resolution or noisy single-pixel images. These techniques 
utilize learned priors or diffusion processes to effectively re-
store and sharpen images, providing higher fidelity results in 
SPI applications. The integration of deep learning models into 
SPI technology brings numerous advancements to the field. 
From single-pixel object detection and segmentation to track-
ing, depth mapping, and image enhancement, deep learning 
algorithms enable more accurate and efficient image recon-
struction and analysis. These advancements expand the scope 
of SPI, unlocking its potential in diverse domains and paving 
the way for further innovations in the future.

Conclusions
The emergence of SPI cameras and their integration with 
deep learning algorithms has paved the way for remarkable 
advancements in vision technology. The combination of SPI 
cameras and deep learning techniques allows for enhanced 
image processing, object recognition, and scene analysis, 
leading to improved accuracy and efficiency in various ap-
plications. The future holds tremendous potential for SPI 
cameras and deep learning in numerous fields. Industries 
such as autonomous vehicles, surveillance systems, robotics, 
and healthcare can greatly benefit from this technology. SPI 
cameras offer high-speed data transfer, compact size, and low 
power consumption, making them suitable for integration into 
a wide range of devices. As deep learning algorithms continue 
to evolve and improve, SPI cameras will play a crucial role in 
enabling real-time decision-making and autonomous func-
tionality. With the ability to capture and analyze vast amounts 
of visual data, SPI cameras offer a new level of precision and 
reliability. The ongoing advancements in emerging vision 
technology are set to revolutionize industries and transform 
the way we interact with the world around us.

References
 [1] J. A. Decker, “Hadamard–transform image scanning,” Appl. Opt. 

vol. 9, pp. 1392–1395, 1970. 

 [2] C. A. Osorio Quero, D. Durini, J. Rangel-Magdaleno, and  

J. Martinez-Carranza, “Single-pixel imaging: an overview of 

different methods to be used for 3D space reconstruction in harsh 

environments,” Rev. Sci. Instrum., vol. 92, article 111501, 2021.

 [3] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, 

vol. 52, pp. 1289–1306, 2006.

 [4] G. M. Gibson, S. D. Johnson, and M. J. Padgett, “Single pixel 

imaging 12 years on: a review,” Opt. Express, vol. 28, pp. 28190–

28208, 2020. 

 [5] C. O. Quero, D. Durini, R. Ramos-Garcia, J. Rangel-Magdaleno, 

and J. Martinez-Carranza, “Hardware parallel architecture 

proposed to accelerate the orthogonal matching pursuit 

compressive sensing reconstruction,” in Proc. of the Computational 

Imaging V, Int. Soc. Optics and Photonics, vol. 11396, pp. 56–63, 

2020.

 [6] F. Wang, C. Wang, C. Deng, S. Han, and G. Situ, “Single-pixel 

imaging using physics enhanced deep learning,” Photon. Res.,  

vol. 10, pp. 104–110, 2022. 

 [7] C. Osorio Quero, D. Durini, J. Rangel-Magdaleno, J. Martinez-

Carranza, and R. Ramos-Garcia, “Single-pixel near-infrared 3D 

image reconstruction in outdoor conditions,” Micromachines,  

vol. 13, 2022. 

 [8] Z. Yang et al., “SP-ILC: concurrent single-pixel imaging, object 

location, and classification by deep learning,” Photonics, vol. 8, 

2021. 

 [9] L. Peng et al., “Image-free single-pixel object detection,” Opt. Lett., 

vol. 48, pp. 2527–2530, 2023. 

 [10] R. Martin-Brualla et al., “NeRF in the wild: neural radiance fields 

for unconstrained photo collections,” in Proc. 2021 IEEE Conf. 

Computer Vision and Pattern Recognition (CVPR), pp. 7206–7215, 

2021.

 [11] X.-Y. Liu et al., “3D human pose and shape estimation from 

video,” in Proc. 2022 IEEE Int. Conf. on Internet of Things (iThings), 

IEEE Green Computing & Communications (GreenCom), IEEE 

Cyber, Physical & Social Computing (CPSCom), IEEE Smart Data 

(SmartData), and IEEE Congress on Cybermatics (Cybermatics),  

pp. 617–624, 2022.

 [12] C. Choy, J. Gwak and S. Savarese, “4D spatio-temporal ConvNets: 

Minkowski Convolutional Neural Networks,” in Proc. 2019 IEEE/

Conference on Computer Vision and Pattern Recognition (CVPR),  

pp. 3070–3079, 2019.

 [13] P. Kilcullen, T. Ozaki, and J. Liang, “Compressed ultrahigh-speed 

single-pixel imaging by swept aggregate patterns,” Nat. Commun., 

vol. 13, 2022. 

 [14] Z. Sun, F. Latorre, T. Sanchez and V. Cevher, “A plug-and-play 

deep image prior,” in Proc. 2021 IEEE Int. Conf. Acoustics, Speech 

and Signal Processing (ICASSP), pp. 8103–8107, 2021.

 [15] C. Osorio Quero, D. Durini, J. Rangel-Magdaleno, J. Martinez-

Carranza, and R. Ramos-Garcia, “Deep-learning blurring 

correction of images obtained from NIR single-pixel imaging,” 

 J. Opt. Soc. Am. A, vol. 40, no. 7, pp. 1491–1499, 2023. 

Carlos Alexander Osorio Quero is currently an Associate 
Programmer with ICTP-Italy and conducts Postdoctoral Re-
search at the National Institute of Astrophysics, Optics and 
Electronics (INAOE) in Puebla, Mexico. He earned his Ph.D. 
degree in electronic engineering from INAOE in December 
2022. Previously, he received the M.Sc. degree from Simon Bo-
livar University in 2015, an M.Sc. in science and technology 
space from INAOE in 2017, a bachelor degree in electronic 
engineering from Simon Bolivar University in 2009 and the 
Diploma of Higher Education in Electronics from I.U.T-R.C. 
in  December 2003.

Daniel Durini is currently Research and Development Direc-
tor and a Full Research Professor in areas of microelectronics 
and radiation detection at the National Institute of Astrophys-
ics, Optics and Electronics (INAOE) in Puebla, Mexico. He 
earned the B.Sc. degree in 2002 (UNAM, Mexico), the M.Sc. de-
gree in 2003 (INAOE, Mexico), and the Ph.D. degree in 2009  
(U. Duisburg-Essen, Germany).

José de Jesús Rangel-Magdaleno (S’08–M’13–SM’17) is Full Re-
searcher in the Electronics Department at the National Institute 

Authorized licensed use limited to: INSTITUTO NAL. ASTROFISICA O. Y ELECT (INAOE). Downloaded on April 01,2024 at 21:09:08 UTC from IEEE Xplore.  Restrictions apply. 



April 2024 IEEE Instrumentation & Measurement Magazine 47

of Astrophysics, Optics and Electronics (INAOE) in Puebla. 
Mexico. His research interests include FPGAs, signal and im-
age processing, instrumentation and mechatronics. He received 
the B.E. degree in electronics engineering and the M.E. degree 
in electrical engineering on hardware signal processing from 
 Universidad de Guanajuato, Mexico in 2006 and 2008, respec-
tively. He received the Ph.D. degree from the Autonomous 
University of Querétaro, Mexico in 2011. Dr. Rangel-Magdaleno 
received the 2018 IEEE Instrumentation and Measurement Soci-
ety’s Outstanding Young Engineer Award. He is a member of the 
Mexican national research system (SNI), level 2.

José Martinez-Carranza is a Full-Time Principal Researcher 
B (equivalent to Associate Professor) in the Computer 

Science Department at the National Institute of Astrophys-
ics, Optics and Electronics (INAOE) in Puebla, Mexico. His 
research focuses on vision-based methods for robotics, such 
as visual SLAM, visual odometry, and camera pose esti-
mation with applications in autonomous and intelligent 
drones.

Rubén Ramos-García is a Professor in the Optics Department 
of the National Institute of Astrophysics, Optics and Elec-
tronics (INAOE) in Puebla, Mexico. He has been with INAOE 
since 1997. He obtained his Ph.D. degree at the Imperial Col-
lege London and his B.Sc. degree at the Polytechnical National 
Institute. His research areas are optical tweezers, cavitation, 
single-pixel imaging and biophotonics.

Authorized licensed use limited to: INSTITUTO NAL. ASTROFISICA O. Y ELECT (INAOE). Downloaded on April 01,2024 at 21:09:08 UTC from IEEE Xplore.  Restrictions apply. 


