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In challenging scenarios characterized by low-photon conditions or the presence of scattering effects caused by
rain, fog, or smoke, conventional silicon-based cameras face limitations in capturing visible images. This often
leads to reduced visibility and image contrast. However, using near-infrared (NIR) light within the range of 850–
1550 nm offers the advantage of reduced scattering by microparticles, making it an attractive option for imaging
in such conditions. Despite NIR’s advantages, NIR cameras can be prohibitively expensive. To address this issue,
we propose a vision system that leverages NIR active illumination single-pixel imaging (SPI) operating at 1550 nm
combined with time of flight operating at 850 nm for 2D image reconstruction, specifically targeting rainy con-
ditions. We incorporate diffusion models into the proposed system to enhance the quality of NIR-SPI images. By
simulating various conditions of background illumination and droplet size in an outdoor laboratory scenario, we
assess the feasibility of utilizing NIR-SPI as a vision sensor in challenging outdoor environments. © 2023 Optica

PublishingGroup

https://doi.org/10.1364/JOSAA.488549

1. INTRODUCTION

Object detection under bad-weather conditions is a funda-
mental computer vision task widely used in autonomous robot
systems, including self-driving vehicles [1] and autonomous
drones [2]. In recent years, vision systems based on RGB sen-
sors [3] that operate in the visible (VIS) part of the spectra
(with wavelengths between 400 and 700 nm) have become
an essential element for autonomous navigation systems, but
they can be affected by scattering particles in the atmosphere,
drastically reducing the quality and the depth of visibility [4].
Consequently, alternative vision systems are required to work
under different weather conditions [5,6].

In rainy environments, the interaction of light with raindrops
causes absorption, reflection, and scattering [7]. The light scat-
tering is stronger in the VIS spectrum than in the near-infrared
(NIR) part of the spectrum [8]. Due to this fact, image sensors’
imaging and ranging capabilities under scattering conditions
are degraded [3]. Therefore other technologies have been used
as redundant sensors to mitigate the low performance of the
vision sensors. Such is the case of silicon-based light detection
and ranging (lidar) [9,10], typically using NIR radiation with
850 and 905 nm wavelengths, respectively, or radio detection
and ranging (radar) [11].

In the spectral range between 0.8 and 15 µm [12], incident
light can pass through the water droplets with less scattering

(Mie effect [7,13]); these advantages mean that the IR bands can
be exploited to be integrated into vision technologies as time of
flight (TOF) and single-pixel imaging (SPI) for applications in
an environment with scattering [14].

For applications where high spatial resolutions in both
2D and ranging are not crucial, a SPI vision system can be
employed. This system utilizes active illumination in the NIR
wavelength range of 850–1500 nm, using single InGaAs pho-
todetectors [15]. NIR-SPI offers a viable solution that can be
effectively used, even in scattering conditions. However, the
captured NIR images may suffer from degradation and blurring.
To address this issue and enhance image quality, a diffusion
model neuronal network based on the UNet architecture has
been proposed [16,17]. This network employs a training process
where a reference image is input, and the image is gradually
degraded to simulate the level of degradation caused by water
droplets.

Considering the inherent symmetry of the diffusion network
[16,18,19], it is possible to reverse the blurring effects by apply-
ing a deblurring process [20,21], thereby restoring the image
to its optimal quality. Motivated by this observation, our work
aims to propose the following approach:

• We present a novel NIR-SPI vision system designed to
reconstruct images effectively in rainy conditions. Our aim is to
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evaluate the performance of the NIR-SPI system in comparison
to an RGB camera operating under identical conditions.

• We propose using an array of NIR-LEDs to substitute for
the spatial light modulator (SLM) commonly used in SPI.

• We propose using diffusion networks to reconstruct the
blurred image by applying a deblurring process.

2. SINGLE-PIXEL IMAGE RECONSTRUCTION

An SPI camera produces images by interrogating a scene with a
sequence of spatially structured light patterns while measuring
the correlated intensity on a detector without spatial resolution.

A key element of the SPI camera is the use of spatial light
modulators (SLMs) such as digital micromirror devices
(DMDs), as shown in Fig. 1. SPI is available in two archi-
tectures: structured detection Fig. 1(a), and structured
illumination Fig. 1(b) [22].

In the case of structured detection, the object is illuminated
by a light source, the reflected light is projected onto an SLM,
and the light is captured by a bucket detector. In the case of
structured illumination, the light source is spatially modulated
by the SLM illuminating the object [see Fig. 1(b)]; the reflected
light is again detected.

The correlation of the light spatial pattern 8 and the light
reflected from the object O is equivalent to an inner prod-
uct, i.e., an electrical signal y i . Thus, projecting a sequence of
N ×M spatial patterns allows us to obtain a sequence of an
electrical signal given by Eq. (1) [15],

y i = α

M∑
i=1

N∑
j=1

O(i, j )8(i, j ), (1)

where α is a constant factor that depends on the optoelectronic
response of the photodetector. The image xi is computationally
reconstructed from the captured signal y i , and the correspond-
ing pattern8 according to Eq. (2) [15],

xi = α

M∑
i=1

N∑
j=1

y i8(i, j ). (2)

A. Generation of the Hadamard-like Patterns Using
Active Illumination

In this study, we introduce a novel method utilizing struc-
tured illumination. The illumination is achieved by employing

Fig. 1. Two different approaches applied to SPI. (a) Structured
detection and (b) structured illumination [22].

an array of 32× 32 NIR-LEDs that emit at a wavelength of
1550 nm. The choice of this wavelength is motivated by its
reduced scattering and absorption coefficients in water. The
array of NIR-LEDs is strategically positioned perpendicular to
the lens’s optical axis, allowing for the projection of light pat-
terns. However, due to the array’s size, the patterns are projected
within a range of 0.3–3 m. One drawback of active illumina-
tion is that it does not fully illuminate the object, potentially
impacting the quality of the resulting image reconstruction.
Nevertheless, we address this issue by utilizing the fast superres-
olution convolutional neural network (FSRCNN) technique
[23], allowing us to reconstruct high-quality images. This active
illumination approach offers numerous advantages, including
its ability to operate effectively under various outdoor weather
conditions, low-level illumination (scenarios involving dust,
fog, rain, or smoke), and reduced sensitivity to background radi-
ation noise [24]. Moreover, our proposed configuration requires
fewer optical elements and is more cost-effective. Additionally,
it offers the potential for a significantly higher modulation rate,
as no moving parts are involved.

B. SPI Camera

The NIR-SPI architecture presented in this study consists
of two main components. First, we generate images based
on the single-pixel principle. These SPI elements include an
InGaAs photodetector (Thorlabs FGA015 diode operating at
1550 nm), an array of NIR-LEDs (1550 nm) for active illu-
mination, a time-of-flight system, and an analog-to-digital
converter (ADC) [see Fig. 2(a)]. Second, we introduce a sub-
system responsible for processing the electrical output signal
obtained from the bucket detector. The signal is digitized using
the ADC, and the resulting data is processed using an embedded
system-on-module (SOM) [25], specifically the GPU–Jetson
Xavier NX shown in Fig. 2(b). The SOM performs multiple
tasks, such as generating Hadamard-like patterns and processing
the digitized data from the ADC. The orthogonal matching
pursuit (OMP-GPU) algorithm [26] is implemented on the
SOM, enabling the generation of 2D images (Table 1 presents
the processing time for each stage involved in the 2D image
reconstruction process). For further details on the SPI camera,
we refer interested readers to [4].

C. 2D Reconstruction Algorithm

After acquiring the electrical signal y i using an ADC, we uti-
lized the OMP algorithm 1 to extract the image xi . The OMP
algorithm requires solving the equation |y i −8(i, j )xi |< ε

[22]. To improve the efficiency of reconstructing the 2D
SPI image using the OMP algorithm on a GPU unit, we
employed the Cholesky method for matrix inversion as defined
in [27,28]. This method required us to precalculate the sym-
metric and positive Gram matrix, defined as G i =8

T8 [26].
Additionally, we carried out an initial projection p0

=8T y i

[28] (see Algorithm 1, line 3). This projection was performed to
facilitate the implementation of the Cholesky method,

L i =

[
L i−1 0

wT
i

√
1−wT

i wi

]
. (3)
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Fig. 2. Overall block diagram of the proposed vision system dimension 11 cm× 11 cm× 14 cm. It contains a lens to project the active illumi-
nation patterns (focal length of 20 cm), a weight of 1.2 kg, and a power consumption of 45 W. (a) The first stage module contains a photodiode, an
active illumination source, and an InGaAs photodetector diode (FGA015) for TOF system [4]. (b) The second stage includes a GPU unit and ADC,
a processing unit involving an FSRCNN network to improve the low-resolution SPI images and fusing them with TOF information captured.

Table 1. Total Processing Time, Denoted as T2D,
Varies Depending on the Image Capture and
Reconstruction Stages

a

Tpre (ms) TOMP (ms) TDL (ms) Tdm (ms) T2D (ms)

18–24 20–25 9 – 45–58
18–24 20–25 9 15 62–76

aThis includes considering the acquisition time ADC (Taq), the Hadamard
time projection array NIR-LEDs (THad), the exposure time of the bucket
detector (Text), which is defined as the sum of pre-acquisition stage
times (Tpre = Taq + THad + Text), reconstruction time (TOMP), TOF fusion
image-processing time (TDL), and the application of a diffusion model (Tdm).

The matrix G can be decomposed into two triangular
matrices using Cholesky decomposition, represented as L i LT

i
[Eq. (3)]. Here, L i is a triangular Cholesky factor [29] (refer to
Algorithm 1, line 8). To solve this matrix, we define a system
L i LT

i xi =8
T y i . This system can be solved by treating it as

a triangular system, where we express the system in the form
L i u = b with b =8y i and LT

i xi = u (see Algorithm 1, line 10).
The matrix L i can be calculated using the formulation in Eq. (3)
[26], where wi = L−1

i G i (see Algorithm 1, line 7). To obtain
the reconstructed signal xi (which contains the vector image
reconstruction and needs to undergo a reshape operation to
convert it into an N × N matrix), we define a stopping cri-
terion to compare the norm of the residual with a threshold ε
(see Algorithm 1, line 14), eliminating the need to calculate

the residual δ (see Algorithm 1, lines 11-13). To enhance the
efficiency of the algorithm, we propose implementing it on
compute unified device architecture (CUDA) to parallelize the
reconstruction operation [25,30] (see Algorithm 1).

To generate the final 2D image, we employ a combination of
the SPI image (obtained using Algorithm 1) and postprocessing
the depth information from a TOF system. To enhance the
depth of data, we apply a normalization technique. Initially,
the input image undergoes fusion by incorporating data from
the TOF system. This fusion process is achieved using the
FSRCNN network method, as detailed in [4]. The result is an
improved image with 4 times the original resolution. As a result,
we obtain a final high-resolution image with dimensions of
64 pixels× 64 pixels.

D. Image Acquisition Protocol for Artificial Rain
Scenarios

For the design of the SPI camera, two parameters are considered
when capturing SPI images under rainy conditions: the expo-
sure time (Text) in the detector and the frequency of the pattern
projection [31]. In the first case, the exposure time needed to
acquire the minimum number of photons to construct an image
was estimated using theoretical modeling of the NIR-SPI under
rainy conditions; this is summarized in the Algorithm 2 and
was calculated assuming Mie scattering [32], rain speed effect
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Algorithm 1. OMP-GPU algorithm [26], Input:
OMP-GPU algorithm input data: Patterns 8, input
signal yi, target sparsity K, Output: OMP-GPU
algorithm output data: sparse representation xi that
fulfills the relation yi ≈8xi

1: procedure OMP-GPU8, y i , K:
2: set: L1 = [1], i = 1, p0

=8T y i

3: set: ε= y i y T
i , G i =8

T8, p = p0

4: while εi−1 > ε do
5: k = argmaxK |p| F Finding the new atom
6: if i > 1 then
7: wi = {L i−1wi = G i−1,K } F Solverwi

8: L i =

[
L i−1 0
wT

i

√
1−wT

i wi

]
FUpdate of Cholesky

9:
10: xi = {L i LT

i xi = p o
} F Solver xi

11: β = G i xi FMatrix-sparse-vector product for each path
12: p = p o

− β

13: δk
= x T

i β FCalculate error
14: εk

= εk−1
− δk
+ δk−1

FCalculate norm ε

15:
16: i = i + 1 F increasing iteration
17: return xi

modeling [32], noise floor NIR-SPI to determine [33]. The
exposition time Text was estimated to be between 8 and 25 µs,
for distances between 0.3 and 1 m.

Based on the exposition time Text, the minimum frequency
range of the ADC is FADC = 125 MHz. The frequency patterns
projection are defined through the Eq. (4) [34],

Fmin =
FADC

Fpatterns
, (4)

where the parameter Fmin determines the efficiency in pixels
(InGaAs with efficiency pixel 0.9 [34]). An optimal design to be
considered is F = Fmin (F corresponding to the number of real
pixels of the sensor) for which the highest ADC measurement
rate with the lowest resolution of the sensor can be obtained to
increase the signal-to-noise ratio under outdoor measurement
conditions. For the design condition F < Fmin, the measure-
ment resolution is limited by the frequency patterns Fpatterns,
and for the condition F > Fmin, the measurement resolution
is limited by the sensor change-collection or signal exposure
time (Text). Based on this condition and considering the effect
in the rainy speed [35], the pattern generation frequency will be
defined between the range of Fpatterns = 25 MHz (the modula-
tion rate of the LED array is represented by the time parameter,
which is indicated in column 1 variable THad of Table 1) and
FADC = 125 MHz, can obtain an improved measurement rate
of 5 times faster Eq. (4).

To determine the setup parameters for designing the NIR-SPI
system, we evaluate the exposure time versus visibility depth in
two conditions: light (diameter 0.5 mm) and heavy (2 mm)
rain, which is necessary to determine the rain rate approximate
and extinction factor through the methods defined in [36] (see
Table 2).

Algorithm 2. Pseudocode to estimate the maximum
capture distance of SPI camera under rainy conditions,
Input: Lb background radiance (noise), QE(λ)
photodetector’s quantum efficiency, R material
reflection index, λ wavelength, Text exposure time,
Tpatterns time it takes to project the active illumination
patterns, Zmax field-far measurement, Zh horizontal
polarized reflectivity, Zv vertical polarized reflectivity, D
diameter of the water droplet, Output: z Maximum
measurement distance

procedure EstimateDistance (Lb , QE (λ), R , λ, Text, Tpatterns, Zmax,
Zh , Zv , D):

set: transmittance τlens, effective photosensitive area Apixel

set: focal aperture angleαFOV, irradiation level of the active
illumination source8eλ, and focal number of the system f#.

ii=0 F Initialization iteration ii
z=0 F Initialization distance z
1z= (Zmax/10) F Initialization step1z
Weather parameters
Zdr = 10 log(Zh/Zv) FReflectivity of the medium [37].
3 FRaindrop concentration distribution slope [32]
µ FRaindrop shape parameter [32]
N(D) FThe raindrop distribution [32]
µs (λ, D) F Scattering cross section [32]
Mie scattering
µa(λ, D) FAbsorption coefficient [32,38]
α(λ, D)=µa (λ, D)+µs (λ, D) FAttenuation coefficient
Rain speed effect.
v(D) FRain speed [32]
τrain = 2D/v(D) FRain fall time constant [32].
0<β <

√
D

50Tpatterns
F Factor of the raindrop [32].

while z< Zmax) do
8eλ =8eλe−α(λ,D)z FActive illumination source.

A=
π f 2

foc D2

z F Factor A corresponds to focal parameters.
L ri = L ri−1 e−βz

+ Lb(1− e−βz) FBrightness of rain droplets.
E eλ_s um(λ) FBackground irradiance level [32]
E (N)ii (A, E eλ_s um(λ), z, λ,8eλ, Text, Tpatterns,αFOV, τlens, Apixel)
FNumber of photons impinging on the photodetector [32]
σNoise floor FCalculation of the general electrical noise floor [33].
if |E (N)ii − σNoise floor|< δth then

Break
ii=ii+1
z= z+1z F Increase the step measurement
return z

Table 2. Relation Exposure Time (Text), Rain Rate (R),
and Capture Distance under Conditions of Light and
Heavy Artificial Rain Based on Algorithm 2

Rainfall Text (µs) R (mm/h) Distance (m)

Light 8–25 1.93 0.1–2
Heavy 8–25 5.6 0.2–1.5

3. DIFFUSION MODELS

In computer vision, a neural network is trained to denoise
blurred images with Gaussian noise [39]. The range for defining
the level of degradation in the image is determined by apply-
ing the Gaussian filter [40,41]. The neural network learns
to reverse the diffusion process [17]. The diffusion model is
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Fig. 3. Forward and reverse diffusion process of generating a sample
by slowly adding and removing blur [16].

defined by a forward process that gradually degrades [42] (the
degradation can be randomized or deterministic) the input data
x0 ∼ q(x ), and we add a small amount of Gaussian noise and
blur to the sample in steps, producing a sequence of affected
samples (see Fig. 3). The step sizes are controlled by a variance
schedule with noise over the course of T time steps and through
a restoration operator [Eq. (5)], the original data can be restored
(see Fig. 3) [17]. The idea of using the diffusion model is to train
a neural network to recognize objects after the light is affected by
light scattering or low-level light.

A. Forward Diffusion Process

For each training data set (see Fig. 3), we add a blur to the
sample in T steps, producing a sequence of images with blur
x1, . . . , xT ; the step sizes are controlled by a variance sched-
ule {βtε(0, 1)}Tt=1; the forward diffusion process defined
as (q(xt |xt−1)) is defined from the following Markov chain
Eq. (5), with zt ∼ N(0, I ), where N represent the noise caused

by blur in the samples; {βt}
T
t=1 is the predefined blur schedule;

αt = 1− βt , and ᾱt =
∏T

t=1 αt [17],

xt = xt−1 −
√

1− βt xt−1 +
√
βt zt

q(xt |xt−1)= N(xt ;
√
ᾱt x0, (1− ᾱt)

2 I ). (5)

B. Reverse Diffusion Process

The reverse process (see Fig. 3) requires the estimation of proba-
bility density q(xt |xt−1) when t = T (the variable T represents
the maximum number of iterations that the sample is affected
by blur), which implicates generating a data sample from iso-
tropic Gaussian noise. Therefore, we shall have to train a neural
network model that estimates the pθ (x0:T) [Eq. (6)] based on
learned weights θ and the current state at time t [Eq. (6)] [17],
whereµ2 is the parameterization of the mean [Eq. (7)] [17], and∑

θ (xt , t) as variance function. For the estimation ofµθ (xt , t),
we apply different ways of training. In this work, we use UNet as
a neural network, trained to predict the noise ε from the earlier
formulation of q(xt |xt−1),

pθ (x0:T)= p(xT)

T∏
t=1

pθ (xt−1|xt)

pθ (xt−1|xt)= N(xt−1;µθ (xt , t),
∑
2

(xt , t)), (6)

µθ (xt , t)=
1
√
αt

(
xt −

βt
√

1− ᾱt
εt

)
. (7)

Fig. 4. Simulating blur removal using PyTorch CUDA with the data set Chars74K: a diffusion-based approach. (a) showcases the input image X 0,
where the details are partially obscured due to blur. In panel (b), we apply a forward blurring process using the UNet architecture. This step emulates
real-world scenarios where blur is introduced during image capture or transmission. The UNet helps us accurately simulate this blurring effect. In
panel (c), we employ a backward blur diffusion module. This module utilizes the diffusion model, a powerful concept from image processing, to effec-
tively reverse the blur and recover the lost details.
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C. Training

During the training of the UNet procedure, we performed a
total of 500 diffusion steps. The data set used was Chars74K
[43], which contains 74,000 images comprising uppercase and
lowercase letters, numbers, and symbols. The images had a res-
olution of 64 pixels× 64 pixels. To simulate rainy conditions,
we applied a Gaussian filter to both the training and testing
images, as shown in Fig. 4. We set the learning rate to 10−4 to
expedite convergence. The implementation of the diffusion
model involved the following steps [17,39]:

1. Sample image x0 ∼ q(x0).
2. Choose a certain step in the diffusion process x1, . . . , xT .
3. Apply the bluring ε ∼ N(0, I ).
4. Try to estimate the blur.
5. ε(xt , t)= ε2(

√
ᾱt x0 +

√
1− ᾱtε, t).

6. Learn the network UNet by gradient descent on loss
L ∇θ ||ε − εθ (xt , t)||2, where the loss can be nicely
presented as Eq. (8),

L =
(∥∥∥ε − ε0

(√
ᾱt x0 +

√
1− ᾱtεt

)∥∥∥2
)

. (8)

4. SIMULATOR STRUCTURE DESIGN

For this project, we have developed a simulator designed to
replicate rainy scenarios, including heavy rainfall with raindrop
sizes of 2 mm (the operation of the rainfall simulation system
and the experimental setup is described in [32]), as well as a
half-cloudy scenario with an illumination intensity of 15 KLux.
The dimensions of the simulator, as shown in Fig. 5, are 1.2 m in
length, 60 cm in width, and 50 cm in height.

To enhance the simulation capabilities, we have incorporated
a hydraulic lift mechanism that allows the simulator plot to be
tilted up to 15◦. The hydraulic lift is equipped with a flow rate
range of 1 L/h, ensuring precise control over the simulation con-
ditions. Furthermore, the simulator has six nozzles strategically
placed in a random arrangement. Each nozzle has a spray radius
ranging from 0.5 to 2 mm, as specified in the SPI rain simulation
standard [32].

Fig. 5. Rainfall simulator for the proposed NIR-SPI system:
The test bench incorporates a control system capable of emulating
various rain conditions, with raindrop sizes ranging from 0.5 to
2 mm. Additionally, it allows for precise control over the level of back-
ground illumination. As illustrated, the test objects were strategically
positioned within the enclosed glass box.

Fig. 6. Test structure size letters 43 mm× 43 mm.

A. Rainfall Simulator Calibration

To determine the distribution of rainwater across various points
in the selected sample-placement area, the following steps were
undertaken to improve accuracy testing:

1. To simulate rainfall at each point, containers were placed
under individual nozzles to collect rainwater over a specific
time period.

2. By collecting water samples from each container, we
assessed the rainfall received by each sample location.

3. To ensure uniformity in the rainfall distribution, we
employed the Christiansen uniformity coefficient (CUC)
[44]. It is a widely used mathematical equation for evaluat-
ing water application uniformity from sprinkler irrigation
systems.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the prototype NIR-SPI sys-
tem, we utilized a rainfall simulator to generate rainy scenes.
The system was calibrated following the steps outlined in
Section 4.A, and samples were taken. An image letter of
dimensions 43 mm× 43 mm was reconstructed (see Fig. 6)
at distances of 30 cm, 60 cm, and 1 m. For testing purposes, we
evaluated the enhanced SPI image using a generative adversarial
network (GAN) [45] and our diffusion model (see Fig. 7). To
validate the performance of the NIR-SPI system, we conducted
two tests:

(i) We evaluated various parameters to assess the quality of
the reconstructed images. Specifically, we considered
the peak signal-to-noise ratio (PSNR) to be desirable at
>20 dB, indicating a low level of noise in the images [33].
The structural similarity index measure (SSIM) was also
examined, with a value>0.5, suggesting a reasonable level
of similarity between the processed and original images
[33]. Additionally, we utilized the Fréchet inception dis-
tance (FID) as a measure of image postprocessing quality
using neural networks, aiming for a value<20 for desirable
results [46]. These objective metrics were chosen to quanti-
tatively evaluate the quality of the reconstructed images, as
summarized in Table 3).

(ii) We measured the improvement in spatial resolution [47]
of the NIR image by applying both the GAN and diffusion
model (see Table 4), using the parameters PSNR, SSIM,
and FID.
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Fig. 7. VIS and NIR-SPI images obtained measuring distance 30, 60, and 1 m, under a scenario of half-cloudy (15 KLux) and heavy rainy condi-
tions. In the case of NIR-SPI, the image is improved by applying the GAN and diffusion model (see Visualization 1).

Table 3. Evaluation of Image Reconstruction Quality
Using NIR-SPI Compared to VIS under Rainy
Conditions, with 2 mm Droplet Diameters and a
Background Illumination of 15 KLux (Half-Cloudy)

a

Image PSNR (dB)↑ SSIM↑ FID↓

VIS 10 0.3 -
NIR-SPI 24 0.7 14
NIR− SPI+GAN 23 0.75 38
NIR− SPI+ diffusion model 26 0.84 11

aWe measured PSNR, SSIM, and FID to assess the performance. The net-
work model GAN [45] was applied, along with our diffusion model, to test the
defined objects as shown in Fig. 6.

A. Discussion: Testing the Proposed NIR-SPI System
with and without Rain

We conducted tests on various SPI image reconstructions with
and without utilizing GAN and diffusion models for rainy
scenarios for evaluation purposes. These scenarios involved
droplet diameters of approximately 2 mm, representing heavy
rain and half-cloudy background illumination conditions.
The tests were conducted at distances of 30 cm, 60 cm, and
1 m. Initially, we compared the images captured in the VIS and

Table 4. Evaluation of Spatial Resolution (mm) under
Rainy Conditions with 2 mm Droplet Diameters,
Background Illumination of 15 KLux (Half-Cloudy) for
the Distance Measurement d1 = 30 cm, d2 = 60 cm, and
d3 = 1m Applying the Network Model GAN [45] and Our
Diffusion Model

Image d1(mm) d2(mm) d3(mm)

VIS 45 48 60
NIR-SPI 5 25 45
NIR− SPI+GAN 5 18 40
NIR− SPI+ diffusion model 5 15 25

NIR-SPI spectra under rainy conditions (refer to Fig. 7). The
reconstructed image of the VIS spectrum was adversely affected
by the Rayleigh effect, leading to degraded image quality values
of PSNR= 10 dB and SSIM= 0.3. Additionally, the spatial
resolution varied between 45 and 60 mm.

On the other hand, employing the NIR-SPI system allowed
us to obtain an image with lower scattering than the VIS image
(see Fig. 7). The NIR-SPI image exhibited improved image
quality with PSNR= 24 dB and SSIM= 0.8 (refer to Table 3),
while the spatial resolution ranged between 5 and 45 mm.

https://doi.org/10.6084/m9.figshare.23573370
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By utilizing diffusion models on the NIR-SPI image, we
observe a noticeable enhancement in the performance of
reconstructed images under rainy conditions. Using the dif-
fusion model, we achieve PSNR= 26 dB, SSIM= 0.85, and
FID= 11 (refer to Table 3). Additionally, there are significant
improvements in spatial resolution (refer to Table 4), with
an increase from 60 to 25 mm compared to VIS scenarios.
However, when employing GAN, convergence limitations
become apparent due to the scattering effect of light. This leads
to image deformations and lower values of PSNR and SSIM.

6. CONCLUSION

In this work, we present a NIR-SPI vision system that utilizes
active illumination provided by an array of NIR-LEDs. This
system allows for the reconstruction of single-pixel images even
in rainy scenarios with a background illumination of 15 KLux.
To enhance the image quality of the NIR-SPI, we propose using
a diffusion model to eliminate the scattering effect caused by the
interaction between light and water droplets. During testing, we
observed that the diffusion model performs better than using
GAN to remove the blur effect in the image (refer to Fig. 7). The
diffusion model significantly increases the level of detail in the
NIR-SPI image (refer to Table 3), especially when compared to
the VIS image, which is more adversely affected by the scattering
effect. At distances greater than 50 cm, both the NIR-SPI and
VIS images exhibit limitations regarding image quality and
spatial resolution (refer to Table 4). However, with the applica-
tion of the diffusion model, we have successfully improved the
NIR-SPI image, resulting in a clearer representation of the test
structure (refer to Fig. 7). This improvement makes the system
suitable for various applications, such as autonomous naviga-
tion for unmanned aerial vehicles (UAVs) [48], particularly in
GPS-denied or hazardous scenarios where RGB sensors face
limitations in capturing images [49].
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