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The extraction of 3D human pose and body shape details from a single monocular image is a significant chal-
lenge in computer vision. Traditional methods use RGB images, but these are constrained by varying lighting and
occlusions. However, cutting-edge developments in imaging technologies have introduced new techniques such
as single-pixel imaging (SPI) that can surmount these hurdles. In the near-infrared spectrum, SPI demonstrates
impressive capabilities in capturing a 3D human pose. This wavelength can penetrate clothing and is less influ-
enced by lighting variations than visible light, thus providing a reliable means to accurately capture body shape
and pose data, even in difficult settings. In this work, we explore the use of an SPI camera operating in the NIR with
time-of-flight (TOF) at bands 850–1550 nm as a solution to detect humans in nighttime environments. The pro-
posed system uses the vision transformers (ViT) model to detect and extract the characteristic features of humans
for integration over a 3D body model SMPL-X through 3D body shape regression using deep learning. To evaluate
the efficacy of NIR-SPI 3D image reconstruction, we constructed a laboratory scenario that simulates nighttime
conditions, enabling us to test the feasibility of employing NIR-SPI as a vision sensor in outdoor environments. By
assessing the results obtained from this setup, we aim to demonstrate the potential of NIR-SPI as an effective tool to
detect humans in nighttime scenarios and capture their accurate 3D body pose and shape. © 2024 Optica Publishing

Group
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1. INTRODUCTION

The process of 3D reconstruction finds extensive applications in
various domains, such as human animation [1], human motion
recognition [2], augmented reality [3], and virtual reality [4].
However, it presents a formidable challenge to obtain a com-
plete 3D model of the human body from just a single 2D image
due to the inherent ill-posed nature of the problem. This is
because different 3D locations can have identical projections
on the 2D image plane, resulting in ambiguity and difficulty
in accurately reconstructing the 3D human body. However,
advancements in computational techniques and algorithms are
constantly improving the accuracy and robustness of 3D recon-
struction methods, paving the way for exciting applications in
various fields such as medical [5], computer imaging (CI) [6,7],
biomedical [8], games [9], and robotics [10].

Reconstructing an accurate human shape from imperfect
input data, accounting for nonrigid deformations and joint
articulations, is a challenging task. Recent advances in deep
learning techniques have made it possible to achieve end-to-end

reconstruction of a human shape [2–11]. However, directly
learning a high-dimensional mesh with articulations, such as
the 3D human mesh (e.g., with 6890 vertices [12]) remains
extremely difficult. Previous approaches using deep neural
networks for 3D human reconstruction have produced results
that are either rugged [13], blurred [14], or distorted [15].
Fortunately, the skinned multi-person linear model (SMPL)
[16] and SMPL eXpressive (SMPL-X) [8] offer compact rep-
resentations for the 3D human shape and have been integrated
with deep neural networks for 3D human reconstruction from
RGB images [17]. The typical pipeline involves using deep
neural networks to extract powerful image features, followed by
direct regression of SMPL shape and pose parameters [17,18].

Currently, various solutions exist for estimating a human
pose using different technologies, such as RGB cameras [17],
thermal cameras [19], and IR ultra-wideband (UWB) radar
[20]. While thermal infrared cameras are commonly used for
object detection in low-illumination situations and provide bet-
ter information for objects with higher temperatures, they have
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poor information for objects with lower temperatures [21]. In
the case of RGB cameras, they are sensitive to low-illumination
scenarios, and a solution for detecting a human pose is to use the
camera in the near-infrared (NIR); however, they are expensive.
Single-pixel imaging (SPI) systems [22,23] offer a promising
solution to the limitations of conventional and thermal cameras
in low-light conditions [24]. SPI systems capture images by
measuring the light reflected from an object through a single-
pixel detector, allowing them to operate in spectral bands such as
the infrared spectrum. By exploiting the power of deep learning
techniques [25,26], SPI systems can reconstruct high-quality
images from sparse measurements, making them an ideal can-
didate for detecting 3D human poses in nighttime surveillance
applications.

A major benefit of SPI systems compared to conventional
cameras includes several aspects [22]: (i) Cost-effectiveness:
SPI systems are more affordable; (ii) Spectral range flexibility:
These devices can operate across a wide range of wavelengths;
(iii) Simplicity and robustness: SPI systems offer a straightfor-
ward operation and durable design; (iv) High dynamic range:
They are capable of capturing images with a vast range of bright-
ness levels; (v) Noise resistance: SPI systems are less prone to
image distortion caused by noise; (vi) High-resolution imag-
ing potential: Advanced deep learning techniques enable SPI
systems to produce high-resolution images; and (vii) Versatile
imaging modalities: an SPI system’s capability to capture images
in the near-infrared (NIR) spectrum enhances its versatility
[27]. NIR imaging provides better visibility in low-light condi-
tions, making it a valuable tool for object detection and tracking
in surveillance applications. By combining SPC technology
with time-of-flight (TOF) sensing, we can obtain 2D/3D
images of the environment, providing additional information
about the location and movement of objects [27]. The use of SPI
systems in surveillance applications is not limited to nighttime
environments. They can also be used to capture images in harsh
environments where traditional cameras may fail, such as in
dusty or foggy conditions [27,28].

In this work, we propose an SPI vision system with active illu-
mination in the NIR wavelength range of 850–1500 nm, which
can be employed using single InGaAs photodetectors [29].
As a strategy for detection, we remove the background of the
SPI image by applying a U2Net [30] to identify the object for
segmentation of the area of interest containing the element to
detect. We then apply the vision transformers (ViT) model [31]
to perform silhouette analysis-based gait recognition for human
identification [32]. Information will be used to generate a 3D
model through the Video Inference for Body Pose and Shape
Estimation method (VIBE) [33]. VIBE predicts SMPL-X [8]
body model parameters using a convolutional neural network
(CNN) pretrained on the AMASS dataset [34] for single-image
body pose and shape estimation.

Therefore, in this work, we propose:

• Exploring the capacity of SPI for the generation of a 3D
human pose from a 2D low-resolution image;

• 2D human action recognition from silhouette SPI apply-
ing the ViT model; and

• addressing a new and challenging task dealing with the
prediction of a 3D hand pose from a single 2D binary mask
obtained from NIR-SPI imaging.

2. RELATED WORK

A. 2D Human Action Recognition

Extensive research has been conducted in computer vision
to study the recognition of human activities [35]. Currently,
various techniques for action representation are available, using
single-view and multiview recognition methods [36]. These
integrate different technologies such as camera mono-stereo
[37], radar [38], and lidar [39]. Single-view human action
recognition is often studied using three types of features: holistic
[40], local features [41], and geometric human body features
[41]. Holistic methods use shape or motion-based information
[42]; shape-based methods are insensitive to the color, texture,
and luminance of a person’s clothing, making them ideal for
action representation [43]. Motion-based approaches may face
challenges such as motion discontinuities, low-quality videos,
and background variations [44]. Geometric human body fea-
tures involve identifying body parts and movements. Local
space–time features or interest points describe these features effi-
ciently with a feature descriptor. Single-view approaches require
the same or a similar camera view for training and testing [45].

Multicamera view-invariant action recognition has become
a popular research topic in the last decade [46]. Multiview
approaches are classified into two categories: 3D and 2D mul-
tiview methods. In 3D methods, 2D human body silhouettes
are joined to obtain a “3D human body pose” representation
[47]. These methods typically necessitate a fixed multicamera
setup during training and testing. On the other hand, 2D mul-
tiview methods propose various types of directions to overcome
limitations through the integration of different cameras to
compensate points of the scene to determine the direction and
cross-view action recognition [48].

Numerous algorithms and systems have been proposed for
human action recognition in the literature, proposing two
general approaches based on deep learning using CNN [35].
The first approach involves compressing an individual’s binary
silhouettes of a one gait cycle into a single compact gait repre-
sentation, called a gait energy image (GEI) [49]. This approach
uses a single image as the gait features representation [49]. The
second approach considers the gait as a sequence of silhouettes
of an individual that are individually used as input for a feature
extractor [50]. CNNs have dominated the field of image-based
deep learning and have become the standard backbone network
used in approaches tackling gait recognition and classification
[51] and predicting a body pose from an image [32].

In recent years, the ViT architecture has emerged as a direct
competitor to CNNs in the field of image classification [31].
ViT has shown excellent results on many image classifica-
tion benchmarks, demonstrating their strong generalization
capability. Compared to CNNs, the ViT model demands fewer
computational resources to train and have a stronger modeling
capability, making them ideal for low-memory computing
systems.
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B. 3D Pose and Shape from a Single Image

Human pose estimation commonly relies on parametric 3D
models of human bodies [52], as they can capture human shape
statistics and provide a 3D mesh for various tasks [53]. Early
work explored different approaches using keypoints and sil-
houettes as input [54], including “bottom-up” regression [55],
“top-down” optimization [56], and multicamera settings [57].
However, these methods were found to be fragile, requiring
manual intervention and failing to generalize well to images in
natural settings.

The SMPLify model [5] was one of the first end-to-end
approaches that fit the SMPL [16] and SMPL-X [8] model to
the output of a CNN keypoint detector. Recently, deep neural
networks have been trained to directly regress the parameters
of the SMPL-X body model from pixels [33]. However, due
to the lack of 3D ground-truth labels, these methods use weak
supervision signals obtained from a 2D keypoint reprojection
loss, body/part segmentation, or human input.

Other models combined regression-based and optimization-
based methods by using SMPLify in the training loop [58].
In addition, several nonparametric body mesh reconstruction
methods have also been proposed [59], including using voxels
as the output body representation [14], directly regressing the
vertex locations of a template body mesh using graph convolu-
tional networks, and predicting body shapes using pixel-aligned
implicit functions followed by a mesh reconstruction step [60].

C. Bodies, Faces, Hands, and Unified Models
SMPL-X

Previous approaches have focused on separate parts of the
body and using statistical shape models learned from 3D scans
[53]. The FLAME model [61] is unique in that it models the
whole head, including 3D head rotations and the neck region,
and is critical for connecting the head and the body [13].
However, none of these methods model correlations between
the face shape and body shape [62]. Similarly, hand modeling
approaches typically ignore the body and rely on non-learned,
artist-designed models [63].

The unified model, SMPL-X [8], combines the SMPL + H
body model [64] with the FLAME head model. Unlike pre-
vious methods that simply graft models together, the authors
fit the full model to 3D scans with 6890 vertices and learn the
shape and pose-dependent blend shapes [12]. This results in a
natural-looking model with a consistent parameterization that
is differentiable and easy to integrate into applications that use
SMPL [16]. Overall, the SMPL-X model offers a more compre-
hensive and realistic approach to modeling human bodies, faces,
and hands. By modeling correlations between these different
parts, the model can better capture natural expressions and
movements.

3. SPI RECONSTRUCTION

The SPI technique [24] is used to reconstruct images by meas-
uring the correlated intensity on a detector without spatial
resolution. The SPI camera utilizes spatial light modulators
(SLMs) such as digital micromirror devices (DMDs) to produce
spatially structured light patterns (Hadamard-like patterns)

Fig. 1. Two different approaches applied to SPI: (a) structured
detection and (b) structured illumination [24].

for interrogation of a scene. The SPI camera can operate in two
architectures: structured detection and structured illumination
(Fig. 1).

In structured detection, the object is illuminated by a light
source, and the reflected light is projected onto an SLM, fol-
lowed by detection using a bucket detector. In contrast, in
structured illumination 8, the light source is spatially modu-
lated by the SLM, illuminating the object O, and the reflected
light is detected by bucket detector is converted in electrical
signal y i by [24]

y i = α

M∑
i=1

N∑
j=1

O(i, j )8(i, j ), (1)

where α is a constant factor that depends on the optoelectronic
response of the photodetector, the correlation of the light spatial
pattern and the reflected light from the object when captured
by the photodetector produces an electrical signal. Therefore,
projecting a sequence of spatial patterns allows a sequence of
electrical signals to be obtained, which can be used to recon-
struct the image computationally. In this regard, the image xi is
reconstructed from the captured signal y i and the corresponding
pattern8using [24]

xi = α

M∑
i=1

N∑
j=1

y i8(i, j ). (2)

To generate Hadamard-like patterns 8 using active illu-
mination, an array of 32× 32 NIR-LEDs emitting radiation
with a peak wavelength of 1550 nm is used in this work. The
choice of wavelength is due to the reduced scattering by water
and the reduced absorption coefficient of water. The NIR-LED
array is placed perpendicular to the focal length of the lens
to project the light pattern to an infinite. However, given the
size of the array, the patterns are projected up to a distance of
0.3–3 m. Although the object is not completely illuminated
in active illumination, the technique of fast super-resolution
CNN (FSRCNN) can be used to reconstruct images with good
quality [65]. The active illumination approach offers several
advantages, such as operating in different outdoor weather
conditions, low-level illumination scenarios, and being less sen-
sitive to background radiation noise. Additionally, the proposed
configuration requires fewer optical elements and lower costs,
and the modulation rate can be much higher because there are
no moving parts involved.
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A. SPI Camera

In our research, we propose the utilization of structured illu-
mination to improve the quality of images captured under
challenging lighting conditions, including strong backlight and
stray light. To achieve this, we employ a time-of-flight (ToF)
system with a wavelength of 850 nm and an InGaAs photodiode
as the bucket detector operating at a wavelength of 1550 nm.

The architecture we introduce in this study is called NIR-SPI,
which consists of two main components. Firstly, we utilize
fundamental elements based on the single-pixel principle to
generate images. These elements include an InGaAs photo-
detector (specifically, the Thorlabs FGA015 diode operating
at 1550 nm), an array of NIR-LEDs for emission, a ToF sys-
tem, and an analog-to-digital converter (ADC). This setup is
illustrated in Fig. 2(a).

Second, we incorporate a subsystem responsible for process-
ing the electrical output signal obtained from the bucket
detector. The signal is digitized using the ADC, and the
resulting data is then processed using an embedded system-
on-module (SOM) [66], specifically the GPU-Jetson Xavier
NX depicted in Fig. 2(a). The SOM performs multiple tasks,
including generating Hadamard-like patterns and processing
the digitized data from the ADC. The orthogonal matching
pursuit GPU (OMP-GPU) algorithm [67] is implemented on
the SOM, enabling the generation of 2D images. The process-
ing time for each stage involved in the 2D image reconstruction
process is also presented. For further details on the SPI camera,
refer to [27].

B. 2D Reconstruction Algorithm

We initiated the process by acquiring and converting the elec-
trical signal y i using an ADC. This involved applying the
Hadamard matrix projection to the signal, resulting in a vec-
tor of signals y i [Eq. (1)]. Subsequently, we utilized the OMP
algorithm (Algorithm 1) to extract the image xi [Eq. (2)]. Our
objective was to solve the equation |y i −8(i, j )xi |< ε [24].
To improve the efficiency of reconstructing the 2D SPI image,
we employed the Cholesky method for matrix inversion as

Algorithm 1. OMP-GPU algorithm [67], Input:
OMP-GPU algorithm input data: Patterns 8, input
signal yi, target sparsity K, Output: OMP-GPU
algorithm output data: sparse representation xi that
fulfills the relation yi ≈8xi

1: procedure OMP-GPU (8, y i , K ):
2: set: L1 = [1], i = 1, p0

=8T y i

3: set: ε= y i y T
i , G i =8

T8, p = p0

4: while εi−1 > ε do
5: k = arg maxK |p| B Finding the new atom
6: if i > 1 then
7: wi = {L i−1wi = G i−1,K } B Solverwi

8: L i =

[
L i−1 0
wT

i

√
1−wT

i wi

]
BUpdate of Cholesky

10: xi = {L i LT
i xi = p o

} B Solver xi

11: β = G i xi BMatrix-sparse-vector product for each path
12: p = p o

− β

13: δk
= x T

i β BCalculate error
14: εk

= εk−1
− δk
+ δk−1 BCalculate norm ε

16: i = i + 1 B increasing iteration
17: return xi

defined in [68,69]. For this method, it was necessary to pre-
calculate the symmetric and positive Gram matrix, defined as
G i =8

T8 [67]. Additionally, we carried out an initial pro-
jection p0

=8T y i (Algorithm 1, line 3). This projection was
performed to facilitate the implementation of the Cholesky
method to get

Lnew =

[
L 0
wT
√

1−wTw

]
. (3)

The matrix G can be decomposed into two triangular
matrices using Cholesky decomposition, represented as
L i LT

i [Eq. (3)]. Here, L i is a triangular Cholesky factor [70]
(Algorithm 1, line 8). To solve this matrix, we define a sys-
tem L i LT

i xi =8
T y i . This system can be solved by treating

it as a triangular system, where we express the system in the
form L i u = b with b =8y i and LT

i xi = u (Algorithm 1, line
10). The matrix L i can be calculated using the formulation

Fig. 2. Proposed vision system’s overall block diagram has dimensions of 11 cm× 11 cm× 14 cm. It comprises several components, including a
lens with a focal length of 20 cm for projecting active illumination patterns. The system weighs 1.2 kg and consumes 45 W of power. (a) In the first
stage module, there are three key elements: a photodiode, an active illumination source, and an InGaAs photodetector diode (FGA015) used for the
ToF system, as described in the 3DSPI reference [27]. (b) The second stage incorporates a GPU unit and an ADC. The processing unit utilizes an
FSRCNN network to enhance the low-resolution SPI images and combines them with the ToF information captured.
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in Eq. (3) [67], where wi = L−1
i G i (Algorithm 1, line 7). To

obtain the reconstructed signal xi , which contains the vector
image reconstruction and needs to undergo a reshape opera-
tion to convert it into an N × N matrix, we define a stopping
criterion to compare the norm of the residual with a thresh-
old ε (Algorithm 1, line 14), eliminating the need to calculate
the residual δ (Algorithm 1, lines 11–13). To enhance the
efficiency of the algorithm, we propose implementing it on
compute unified device architecture (CUDA) to parallelize the
reconstruction operation [66,71] (Algorithm 1).

To produce the final 2D image, we combine the SPI image
obtained through the Algorithm 1 with post-processed depth
information from a ToF system. To enhance the depth data,
we utilize a normalization technique. The initial input image is
first fused with data from the ToF system using the FSRCNN
network method, as described in [27]. This fusion process
results in an enhanced image with four times the original reso-
lution. Consequently, we achieve a high-resolution image with
dimensions of 64× 64 pixels as the final output.

The overall block diagram is shown in Fig. 2, with Fig. 2(a)
representing the proposed vision system and Fig. 2(b) showing
the processing algorithm used by the proposed NIR-SPI vision
system, which takes a low-resolution SPI image, applies an
FSRCNN network [27], and fuses it with information captured
by ToF system.

4. HUMAN MODELING

The use of parametric human models, such as SMPL-X [8–72],
allows for a concise representation of human shapes by utilizing
shape and pose parameters to encode variations [6]. The SMPL-
X model (Fig. 3) offers various advantages:

• It disentangles the human shape and pose, allowing
for independent analysis and control of each human shape
[13,14,33–73];

• It avoids modeling rugged and twisted shapes directly,
which can pose difficulties for neural network-based meth-
ods [13,14,60,61], by utilizing a skinning process to model
deformation; and

• It is differentiable and can be easily integrated with neural
networks [73]. For this research, we used SMPL-X as the under-
lying representation for modeling 3D humans.

The SMPL-X model comprises shape parameters β, and pose
parameters θ ∈R3K . The body pose is defined by a skeleton rig
with K = 24 joints including the body root (define the vector
positions from 0 to 23 with points of reference over the model
SMPL-X human pose [74] 0: Pelvis, 1: LHip, 2: RHip, 3: Spine
1, 4: LKnee, 5: RKnee, 6: Spine 2, 7: LAnkle, 8: RAnkle, 9: Spine
3, 10: LFoot, 11: RFoot, 12: Neck, 13: LCollar, 14: RCollar, 15:
Head,16: LShoulder, 17: RShoulder, 18: LElbow, 19: RElbow, 20:
LWrist, 21: RWrist, 22: LHand, 23: RHand), and global translation
parameters. Shape parameters (β ∈R10) are utilized for shape
blending and encoding global shape information. Pose param-
eters are used for pose blending and skinning and encode local
information between adjacent joints, with the exception of the
root joint’s pose parameters, which denote the global rotation
of the entire shape. It should be noted that SMPL-X’s pose
parameters denote the relative rotation from a joint to its parent,
which differs from 2D or 3D human pose estimation [75],
where the pose refers to joint locations. With β and θ , we can
obtain the 3D body mesh M = fSMPL(β, θ), where M ∈RN×3

is a triangulated surface with N = 6890. We can predict the
3D SMPL-X model locations of the body joints X with the
body mesh using a pretrained mapping matrix W ∈RK×N ,
X ∈Rk×3

=W M [76]. From the 3D human joints and the
perspective camera model to project the body joints from 3D
to 2D. Assuming the camera parameters are δ ∈R3, which
define the 3D translation of the camera, the 2D keypoints can be
defined as J ∈R2

= fproject(X ,δ) [7–77].

Fig. 3. Human poses, but with same joint positions generated from NIR-SPI imaging: (a) Test NIR-SPI imaging, (b) SMPL-X model generated
based on estimation pose (standing, sitting, bending, and lying), (c) SMPL-X model generated with joints.
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Fig. 4. Overview of the proposed network architecture, which takes NIR single-pixel imaging input and outputs 3D body reconstruction based on
SMPL-X shape and pose parameters. The entire network consists of three main modules: (i) NIR-SPI-based image acquisition. (ii) Feature extraction
using deep learning: To extract the background, the NIR-SPI image is used to obtain the silhouette. (iii) 3D pose estimation using a regression-based
approach: The silhouette image is used to obtain the gait features (shape estimation), which are then used to pose the human using ViT and skeleton
joint features. These features are used to pre-define the pose SMPL-X model; from the pre-defined parameters (pose θ , shape β and camera s, R, T),
the SMPL-X model is fed to the off-the-shelf SMPL-X model to obtain the reconstructed 3D human mesh.

5. PROPOSED METHOD

The process used to obtain the 3D human model from NIR-SPI
is shown in Fig. 4. It involves several steps that use different com-
puter vision techniques to reconstruct a 3D human pose from
a single low-resolution image. Here is a detailed explanation of
each step:

• Take a single pixel low-resolution image [see Fig. 6(a)].
This step involves capturing an image of a human. The image
contrast is adjusted to extract the basic shape of the person,
and then the background is removed using U2Net [30], a deep
learning model that can accurately segment the foreground and
background of an image. Thus, to isolate the person from the
background, an image segmentation technique is used (Fig. 4) to
obtain the image’s silhouette. This image only shows the outline
of the person without any details of the surface or texture.

• Applied over the silhouette image, ViT can identify four
human poses: lying, bending, sitting, and standing (Fig. 5).

Fig. 5. Confusion matrix ViT identification of human pose: lying,
bending, sitting, and standing.

Once the pose is identified, it can be used to generate a 3D
human pose using the VIBE method, a deep learning model
that can estimate the 3D pose of a human from a single image or
video.

• Finally, we can reconstruct the human body shape and
pose in 3D space (Fig. 3). This can be done using a tool such as
SMPL-X, as discussed above.

6. EXPERIMENTAL RESULTS

The experimental results show the process to obtain a 3D
human model from NIR-SPI imaging at a distance of 1 m from
an SPI camera and nighttime condition illumination using the
proposed method (Fig. 4). The process involves several steps
that use different deep learning models such as U2Net, ViT, and
VIBE to extract and estimate the 3D pose of a human from a
single low-resolution image.

To evaluate the effectiveness of the proposed method, we con-
ducted experiments on a set of datasets. For the ViT transform
classification, we used the following datasets: silhouette-based
3D human pose estimation [78], silhouette for human pos-
ture recognition [79] the OU-ISIR gait database [80], and the
human pose SMPL-X dataset: AMASS dataset [34]) of single-
pixel low-resolution images of humans. The results show that
the U2Net method can accurately remove the background and
extract the silhouette of a person [Fig. 6(b)]. The ViT model
can successfully detect four different poses of a person from a
silhouette image, and the VIBE model can accurately estimate
the 3D pose of the person from the identified pose (Table 1).
Using SMPL-X, the researchers were able to reconstruct the 3D
shape and pose of the person in space [Fig. 6(c)].

A. Discussion: Proposed Method

For evaluation of the proposed network architecture (Fig. 4),
we tested different NIR-SPI-based image reconstruction



420 Vol. 41, No. 3 / March 2024 / Journal of the Optical Society of America A Research Article

Fig. 6. Capture human poses imaging at a distance of 1 m: (a) Capture NIR-SPI imaging human pose standing, sitting, and bending, (b) silhouette
image, and (c) 3D human pose regression based on SMPL-X model (see Visualization 1).

Table 1. Mean Vertex-to-Vertex (V2V) Results [81] and
Mean Per-Joint Position Error (MPJPE) [82] Body for
Different Human Positions

Human Pose V2V Error (mm)↓ MPJPE (mm) Error↓

Lying 57.29 53.2
Bending 49.86 40.19
Sitting 34.2 33.7
Standing 42 41

approaches using the SMPL-X model to reconstruct human
positions at nighttime from a distance of 1 m while taking into
consideration the limited field of view of the SPC camera, which
is 74◦ × 57◦. We captured NIR-SPI images of the human poses,

including sitting, standing, bending, and lying. We observed
some limitations in the hand and body positions with respect to
the reference image, particularly in the bending position, due to
a loss of information in the input NIR-SPI image resulting from
reflection effects and low resolution in the reconstructed NIR-
SPI image. However, for the standing and sitting positions (as
shown in Fig. 5), the 3D human reconstruction exhibited better
accuracy in terms of vertex and joint positions, as presented
in Table 1. Compared to other models of 3D pose estimation
(Table 2), this model can achieve acceptable accuracy in 3D pose
estimation from low-resolution images, as measured by MPJPE.
This is in contrast to other methods that require high-quality
images for accurate pose estimation.

https://doi.org/10.6084/m9.figshare.24783918
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Table 2. Various Methods to Estimate 3D Human Poses from Monocular Images
a

Method MPJPE (mm) Complexity Performance

VIBE [33] 65.6 Uses a combination of DL and optimization
techniques

Offers higher accuracy in dynamic scenarios

DenseRaC [83] 76.8 Significantly complex Provides detailed and accurate 3D
reconstructions

HoloPose [84] 60.2 Aims at high-fidelity 3D human pose
estimation

High-quality results may not be ideal for
real-time

GCMR [59] 71.9 Employs graph convolutional networks for
mesh regression

Performance can be computationally
intensive

HMR [73] 87.9 Balances between complexity and efficiency Good trade-off between accuracy and speed
UP [85] 80.7 Complex depending on the implementation Offers reliable performance
SMPLify [8] 82.3 Optimization-based approach to fit the

SMPL body model
Offers reasonable accuracy in controlled
environments

Ours 42 Implementation a strategy of ViT and VIBE
methods

3D reconstructions from low-resolution
images

aThese include VIBE (Video Inference for Body Pose and Shape Estimation), DenseRaC (Dense Reconstruction of Articulated Characters), HoloPose, GCMR
(Graph Convolutional Mesh Regression), HMR (Human Mesh Recovery), and UP (Unite the People). Additionally, the SMPLify algorithm has been considered,
alongside the other methods we have proposed.

7. CONCLUSION

The proposed methods to obtain a 3D human model from NIR-
SPI imaging, for human poses such as lying, bending, sitting,
and standing, were determined by applying ViT transforms
classification (Fig. 5). The best accuracy was achieved in the sit-
ting position, with an accuracy of around 91%, as shown in the
V2V and MPJPE error table (Table 1). The results demonstrate
the effectiveness of the proposed approach, with limitations in
hand positioning due to the low contrast of the NIR-SPI image.
However, the level position of the core person detection shows
an accurate estimation of the 3D pose of the person through
qualitative and quantitative evaluations (Table 1). These find-
ings highlight the potential of the proposed approach for 3D
human modeling from a single low-resolution image (Fig. 6).

In comparison, the presented SMPL-X model captures
the body, face, and hands jointly, and the SMPL-X approach
fits the model to a single NIR-SPI image and 2D joint detec-
tions. The results of this work demonstrate the expressivity of
SMPL-X in capturing bodies, hands, and faces from NIR-SPI
images. However, we observed that the bending and lying pose
presented the highest level of V2V and MPJPE error, indi-
cating limitations in the pose parameters θ . Therefore, it is
recommended to implement a compensation model in future
applications. Future work may involve the development of a
dataset of in-the-wild SMPL-X fits and the direct regression of
SMPL-X parameters from NIR-SPI images.

This work marks a significant advancement in the expressive
capture of bodies, hands, and faces using NIR-SPI imaging.
Compared to other methods, our proposed approach provides
efficient 3D reconstruction of poses, as shown in Table 2, even
in low-resolution scenarios. This is particularly advantageous
in environments with low illumination, demonstrating the
robustness and practicality of our technique.
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