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Abstract—Walsh Hadamard Transform (WHT) is an orthog-
onal, symmetric, involutional, and linear operation used in data
encryption, data compression, and quantum computing. The
WHT belongs to a generalized class of Fourier transforms, which
allows that many algorithms developed for the fast Fourier
transform (FFT) work for fast WHT implementations (FWHT).
This paper employs this property and uses a parallel-pipeline
FFT well-known strategy for VLSI implementation to build
parallel-pipeline architectures for FWHT. We apply the FFT
parallel-pipeline approach on a Fast WHT and use the High-
Level Synthesis (HLS) tool from Xilinx Vitis to generate an FPGA
solution. We also provide an open-source code with the basic
blocks to build any model with any parallelization level. The
parallel-pipeline proposed solutions achieve a latency reduction
of up to 3.57% compared to a pipeline approach on a 256-long
signal using 32 bit floating-point numbers.

I. INTRODUCTION

The Walsh-Hadamard Transform (WHT) decomposes any
signal into a series of basis functions called Walsh functions,
which are rectangular or square with values of +1 and −1.
The WHT of a signal with 2n samples can be computed by
the matrix multiplication with the (2n×2n) Hadamard matrix.
This Hadamard matrix can be defined recursively by

Hk =
1√
2

[
Hk−1 Hk−1

Hk−1 −Hk−1

]
(1)

with H0 = [1], or using the Kronecker product by:

Hk = H1 ⊗Hk−1. (2)

Since the values of the Hadamard matrix are +1 and −1, the
WHT computation requires only additions and subtractions.
Also, the definition allows the use of FFT-based algorithms
to reduce the computational complexity of the transform.
These algorithms are based on the Cooley–Tukey algorithm
and reduce the computational complexity from O(N2) to
O(N log2N). These new algorithms receive the name of Fast
Walsh-Hadamard Transform (FWHT). Figure 1 illustrates a
FWHT in a vector of 8 samples.

FWHT has attracted a lot of attention, thanks to its ap-
plication in areas such as quantum information theory [1],
optics [2], image processing [3] and error correction [4]. This
attention brings with it the need for faster implementations.
To address this, several works have been proposed that use

Fig. 1. Fast Walsh-Hadamard Transform on a vector of 8 samples. The black
dots perform the sum between the two input arrows. The dashed lines invert
the data sign, and the solid lines keep the data sign.

specific hardware to execute the transform [5], [6], [7], [8].
Although these implementations provide good latencies, they
are mostly pipelined architectures.

In this paper, we propose a flexible parallel-pipeline ar-
chitecture to compute the FWHT using high-level synthesis
(HLS). The code was developed in C++, allowing to build
new layouts with different numbers of parallel inputs. The
architectures were tested using the Vitis synthesis tools on a
Virtex 9 FPGA and achieve a latency improvement of up to
3.57% compared to a pipeline version.

We start by a brief introduction of the parallel-pipeline
algorithm in section II, then in the next section we explain how
we used HLS to build the architectures. The section IV and
V present the results of two experiments and the conclusions,
respectively.

II. FAST WALSH-HADAMARD TRANSFORM

The main objective of the Fast Walsh-Hadamard Transform
(FWHT) is to reduce the number of operations from N2 to
N log2N , based on generalizations of the Cooley-Tukey FFT
algorithm. One of these FFT solutions was presented by Wold
and Despain in [9], which uses parallel-pipeline architectures
to achieve high throughputs and low latencies. In this section,
we will summarize the Wold and Despain parallel-pipeline
approach.



A. Parallel-Pipeline Architecture

First, we present the operators that constitute the parallel-
pipeline architecture. To define these operators, it is necessary
to introduce the index notation. In this notation each element
on the data stream is represented by a vector [x, y] which
indicates the position of that element into the layout. These
indices are written in binary format as x = [xu · · ·x1] and
y = [yu · · · y1], for example the four element of a row data
stream have a index of [0011, 0000].

With this notation we define the operators as:

δ(l)[x, y] = [[xu · · ·xl+1], [yu · · · y1xl · · ·x1]]
µ(j,l)[x, y] = [[xu · · ·xl+1xl−j · · ·x1], [yu · · · y1xl · · ·xm−j+1]]

µ(l)[x, y] = µ(j,l)[x, y] ∀j = 1

µ−1
(j,l)[x, y] = [[xu · · ·xl−j+1yj · · · y1xl−j · · ·x1], [yu · · · yj+1]]

µ−1
(l) [x, y] = µ−1

(j,l)[x, y] ∀j = 1

R(l)[x, y] = [x, [yu · · · y2(y1 ⊕ yl+1)]]

φ(l,j)[x, y] = [x, [yu · · · yl+j+1(yl+j ⊕ xl)yl+j−1 · · · y1]]
φ(l)[x, y] = φ(l,j)[x, y] ∀j = 0

T(l,j)[x, y] = [[xu · · ·xj+1yl · · · y1], [yu · · · yl+1xj · · ·x1]]

where, ⊕ is the logical operator XOR.
Now, we define the three types of networks that can be cre-

ated, according to the parallelization level. This parallelization
level is indicated with the letter k, so the network implements
2k parallel rows.

1) Case 1 (n− k = k):

δ(k)µ(k)BR(k)µ
−1
(k) · · ·µ(1)BR(1)µ

−1
(1)φ(k) · · ·φ(1)

µ(k)R(k)Bµ
−1
(k) · · ·µ(1)R(1)Bµ

−1
(1)µ

−1
(k,n)

(3)

2) Case 2 (n− k > k):

δ(k)µ(n−k)Bµ
−1
(n−k) · · ·µ(k+1)Bµ

−1
(k+1)

µ(k)BR(k)µ
−1
(k) · · ·µ(1)BR(1)µ

−1
(1)φ(k) · · ·φ(1)

µ(k)R(k)Bµ
−1
(k) · · ·µ(1)R(1)Bµ

−1
(1)µ

−1
(k,2k) (4)

3) Case 3 (n− k < k):

δ(k)µ(n−k)BR(k)µ
−1
(n−k) · · ·µ(1)BR(2k−n+1)µ

−1
(1)φ(n−k,2k−n)

· · ·φ(1,2k−n)µ(n−k)R(k)Bµ
−1
(n−k) · · ·µ(1)R(2k−n+1)Bµ

−1
(1)

T(2k−n,n−k)µ(2k−n)Bµ
−1
(2k−n) · · ·µ(1)Bµ

−1
(1)µ

−1
(n−k,k)µ

−1
(n−k,n)

(5)

The T(2k−n,n−k) operator in the expression requires the
implementation of a buffer with 2n elements, breaking the
pipeline characteristic of the architecture. To replace this
operator we use the following equations, considering that
j = 2k − n and l = (n− k)− j

T(j,l−j) = T(j,j)µ
−1
(j,2j)µ(l−j,n) (6)

T(j,j) = µ(j)R(j)µ
−1
(j) · · ·µ(1)R(1)µ

−1
(1)φ(j) · · ·φ(1)

µ(j)R(j)µ
−1
(j) · · ·µ(1)R(1)µ

−1
(1)

(7)

In the above expressions B represents the butterfly module,
a module that performs the additions and subtractions of the
FWHT. Also the · · · represent that the sub index of the oper-
ator decrease. For example: µ(4)BR(6)µ

−1
(4) · · ·µ(1)BR(3)µ

−1
(1),

it is equal to:

µ(4)BR(6)µ
−1
(4)µ(3)BR(5)µ

−1
(3)µ(2)BR(4)µ

−1
(2)µ(1)BR(3)µ

−1
(1)

III. HARDWARE IMPLEMENTATION

Regardless of the parallelization level, any architecture
is built using Processing Elements (PEs) that perform the
additions and subtractions and Connection Elements (CEs) that
rearrange the data. In this section, we present the PEs and CEs,
along with a latency analysis of the architectures. All modules
are written in Vivado HLS in a way that is easy to build any
parallel-pipeline architecture. The code with some examples
is available on GitHub1.

A. Processing Elements

The PEs in the architecture are four and represent the
expressions: µBµ−1, µRBµ−1, µBRµ−1 and µRBRµ−1.
Although the latter is not in the former expressions, it appears
when the operator T is expanded in (5).

We implement the µ(l)Bµ
−1
(l) element using an adder, a

subtractor, two multiplexers, and a memory element (FIFO),
as illustrated in Figure 2a. We divided the operation of this
block into three stages: (i) we write the input data to the FIFO
until it is full. (ii) We read the FIFO values and compute them
with new incoming data, the subtraction results go to FIFO and
the sum to the output. (iii) Once the FIFO is filled with the
subtraction results, the output takes values from the FIFO read
port, and the new data are written to the FIFO as in the first
stage. The final two stages are repeated until there is no more
input data.

The rest of the PEs (Figure 2b, Figure 2c and, Figure 2d)
are the equivalent, but with inputs, outputs, or inputs and
outputs reversed. These implementations follow a classical
way to implement the butterfly modules, but in FPGA when we
have limited resources, the use of an adder and subtractor that
operate in the same data seems inefficient. Then we propose
a second PEs version (Figure 3) that uses only one adder and
implement the subtractor by inverting the sign of one input.
The sign inversion represented in the figure by a multiplier is
implemented using the XOR gate. This new version reduces
the number of adders but adds another memory element of the
same size as the existing one.

B. Connection Elements

The connections elements define how the data is rearranged.
The first CE block is the δ(l), which converts the serial data
into 2l rows at the beginning of the architecture. The opposite
of δ(l) are the µ−1

(l,j) blocks, at the end of the architecture. The
last CE is the φ(l,j) block which is a permutation within each
column. We use multiplexers and demultiplexers to implement
these blocks.

1https://github.com/andres091096/fwht hls



(a) µ(l)Bµ
−1
(l)

(b) µ(l)R(l)Bµ
−1
(l)

(c) µ(l)BR(l)µ
−1
(l)

(d) µ(l)R(l)BR(l)µ
−1
(l)

Fig. 2. First version of the processing elements implemented on the architectures.

(a) µ(l)Bµ
−1
(l)

(b) µ(l)R(l)Bµ
−1
(l)

(c) µ(l)BR(l)µ
−1
(l)

(d) µ(l)R(l)BR(l)µ
−1
(l)

Fig. 3. Second version of the processing elements implemented on the architectures.

C. Latency analysis

The architecture uses the HLS pragma dataflow to achieve
task-level parallelism. Thanks to this, the latency of the
architecture is almost the latency of the largest block within
the pipeline. The latency of the blocks is given by the equation
L = D+II∗N , where D is known as the depth of the module,
i.e. the number of cycles to process one sample (typically no
more than ten cycles in this architecture), N is the number
of samples to be processed (2n), and II is the initialization
interval (II = 1 in all the blocks except φ(l,j)).

The CEs, δ(l) and µ−1
(l,j), have a latency of almost 2n, and

φ(l,j) a latency of 2n−k. The two versions of the PEs have a
latency of 3

22
n−k. Then, when k = 0 the PE blocks have a

latency greater than 2n making them the largest blocks in the
pipeline. But, when k > 0 the PEs have a latency less than
2n making the δ(l) and the µ−1

(l,j) the largest blocks.

IV. EVALUATION

A. Environment Setup

We evaluate the implementations using Vitis v2019.2 over
the XCVU9P-FLGB2104-2-I board. All the results presented
in this paper were extracted from Vitis reports after the
synthesis stage targeting a clock frequency of 100 MHz, and
using 32 bit floating-point arithmetic.

B. Experiments

1) Parallelization levels experiment: We test six architec-
tures with parallelization levels (k) from 0 to 5 on a signal
with 256 samples (n = 8). k = 0 is a pipeline architecture
built using only a row of PEs. The k = 1, 2, and 3 models
belong to Case 2 (Expression 4). Replacing the k and n values
into the Case 2 expression, we obtain:

for k = 1

δ(1)µ(7)Bµ
−1
(7) · · ·µ(2)Bµ

−1
(2)µ(1)BR(1)µ

−1
(1)

φ(1)µ(1)R(1)Bµ
−1
(1)µ

−1
(1,2)

(8)

for k = 2

δ(2)µ(6)Bµ
−1
(6) · · ·µ(3)Bµ

−1
(3)µ(2)BR(2)µ

−1
(2)

µ(1)BR(1)µ
−1
(1)φ(2)φ(1)µ(2)R(2)Bµ

−1
(2)

µ(1)R(1)Bµ
−1
(1)µ

−1
(2,4)

(9)

and for k = 3

δ(3)µ(5)Bµ
−1
(5)µ(4)Bµ

−1
(4)µ(3)BR(3)µ

−1
(3) · · ·

µ(1)BR(1)µ
−1
(1)φ(3)φ(2)φ(1)µ(3)R(3)Bµ

−1
(3) · · ·

µ(1)R(1)Bµ
−1
(1)µ

−1
(3,6)

(10)

The k = 4 architecture corresponds to Case 1 (Expression
3), so the expression for this level is:

δ(4)µ(4)BR(4)µ
−1
(4) · · ·µ(1)BR(1)µ

−1
(1)φ(4) · · ·φ(1)

µ(4)R(4)Bµ
−1
(4) · · ·µ(1)R(1)Bµ

−1
(1)µ

−1
(4,8)

(11)

Finally, k = 5 correspond to Case 3 (Expression 5), where
the architecture expression is:

δ(5)µ(3)BR(5)µ
−1
(3) · · ·µ(1)BR(3)µ

−1
(1)φ(3,2)φ(2,2)φ(1,2)

µ(3)R(5)Bµ
−1
(3) · · ·µ(1)R(3)Bµ

−1
(1)T(2,3)µ(2)Bµ

−1
(2)

µ(1)Bµ
−1
(1)µ

−1
(3,5)µ

−1
(3,8)

(12)

To break the T(2,3) operator, we applied the equations 6 and
7, to obtain the final expression:



TABLE I
LATENCY AND RESOURCE CONSUMPTION RESULTS FOR SIX LEVELS OF

PARALLELIZATION OF AN FWHT IMPLEMENTATION USING THE PES
VERSION 1.

Samples k Area Latency
(2n) Level LUTs FFs DSPs BRAMs (Cycles)
256 0 9505 8550 32 24 400
256 1 17840 15874 64 26 330
256 2 34877 31843 128 52 335
256 3 67326 61784 256 107 338
256 4 133233 122738 512 194 348
256 5 258166 239600 1024 324 366

TABLE II
LATENCY AND RESOURCE CONSUMPTION RESULTS FOR SIX LEVELS OF

PARALLELIZATION OF AN FWHT IMPLEMENTATION USING THE PES
VERSION 2.

Samples k Area Latency
(2n) Level LUTs FFs DSPs BRAMs (Cycles)
256 0 7558 5664 16 27 400
256 1 14142 10664 32 30 330
256 2 26826 20733 64 54 334
256 3 52676 41938 128 98 338
256 4 103473 85010 256 194 348
256 5 202230 171152 512 324 366

δ(5)µ(3)BR(5)µ
−1
(3) · · ·µ(1)BR(3)µ

−1
(1)φ(3,2)φ(2,2)φ(1,2)

µ(3)R(5)Bµ
−1
(3)µ(1)R(4)BR(2)µ

−1
(1)µ(1)R(3)BR(1)µ

−1
(1)

φ(2)φ(1)µ(2)Bµ
−1
(2)µ(1)Bµ

−1
(1)µ

−1
(2,4)µ

−1
(3,8)

(13)

We implement these architectures using the two versions
of PEs so, Table I presents the latency measured in clock
cycles and the resource consumption for the six levels of
parallelization using the first version of the PEs and, Table
II shows the results for the second version.

The results show that in both versions of the PEs, the
latency of the pipeline architecture k = 0 is the highest
and, the k = 1 is the lowest. The results also show that the
latency increases with parallelization. This increase is justified
by the previous analysis of the latency. If we have k > 0,
the latency will approach the ideal value 2n + D. But, with
more parallelization, more φ(l,j) stages have the architectures,
increasing the depth of the pipeline.

In addition, these results show that the second version of the
PE consumes fewer resources than the first version. Since the
second version uses only one adder, the DSP usage is half that
of the first version. Also, the memory of the second version is
twice that of the first version, but in the BRAM results, both
versions consume almost the same, this is because part of the
new memory is implemented using the FFs and LUTs, which
have a significant reduction in the second version.

2) Data length experiment: The second experiment evalu-
ates architectures with k = 1, changing the number of samples.
All the architectures use the second version of the PEs.

Table III presents the resource consumption and latency
results of the architectures. The latency in the last five designs

TABLE III
CONSUMED RESOURCES AND LATENCY FOR EIGHTH ARCHITECTURES,

WITH DIFFERENT NUMBER OF SAMPLES AND THE SAME
PARALLELIZATION LEVEL (k = 1). THE ARCHITECTURES USE THE PES

VERSION 2.

Samples k Area Latency
(2n) Level LUTs FFs DSPs BRAMs (Cycles)
16 1 7625 6194 16 10 62
64 1 10894 8586 24 18 124
256 1 14142 10664 32 30 330

1024 1 17536 12940 40 42 1112
4096 1 20981 15340 48 58 4198
16384 1 24532 17762 56 106 16500
65536 1 28392 20254 64 282 65666

262144 1 32240 22818 72 978 262288

is almost the ideal 2n latency, but the three previous designs
are far from this optimal point because the clock frequency.
The BRAMs show a significant increase in the last two input
sizes because the input size also shows a notable increase, and
part of the memory is no longer implemented as LUTs.

V. CONCLUSIONS

The parallel-pipelined architectures presented in this work
show an improvement compared to pipelined solutions. To
improve performance and use the resources better, we suggest
working with architectures with a parallelization level k = 1.
The second version of PEs presented in this paper consumed
fewer resources than the classical version, especially in LUTs,
Flip-Flops, and DSP blocks.

The HLS blocks to build the architecture are easily con-
figurable and allow building new architectures with different
parallelization levels for any number of samples.
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