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Abstract—In this article, we propose a method to be used for
the reconstruction of single-pixel near-infrared (SPI-NIR) low-
resolution 2D images using active illumination with a peak wave-
length on 1550 nm, that is based on Batch Orthogonal Matching
(Batch-OMP) processing algorithms and a region definition in
the projection sequence of Hadamard illumination patterns using
the Genetic algorithm (GA). Different methods to generate
Hadamard pattern sequences have been reported, mostly based
on switching the illumination sequence on and off to improve
the quality of the reconstructed image, thereby increasing the
Structural Similarity Index Measure (SSIM) level and reducing
the processing time.These methods are efficient for image sizes
of > 64x64 virtual pixels,but for lower resolutions with small
coherence areas Ach, the SNR level of the reconstructed image is
very low, which makes other methods, such as those using the Zig-
Zag or Hilbert filling curves for the scanning path, an option for
the reconstruction of SPI-NIR low-resolution images.Due to the
fact that in the present application, we deal with low-resolution
(size image 8 x 4 virtual pixels) SPI-NIR images, we present
a solution to improve the obtained image quality (aiming at
PSNR> 10dB and SSIM> 0.5) that is based on the use of a
specific scanning path and a combination of a genetic algorithm
to define the switching sequences of the Hadamard patterns, using
Batch-OMP algorithm for image reconstruction, in the processing
time range between 20 and 35 ms.

I. INTRODUCTION

This work aims at presenting a strategy for single-pixel
image reconstruction based on generation of Hadamard illumi-
nation patterns through region definition defined by applying
Genetic Algorithms (GA). The latter is used to define the best
suiting illumination patterns, as well as the minimum required
number of those and the sequence in which they are projected,
required to improve the quality of the reconstructed single-
pixel images using near infra-red (SPI-NIR) active illumina-
tion, in background noise conditions. The latter focuses on
applications in Unmanned Aerial Vehicles (UAVs), especially
in what their autonomous navigation is concerned. The most
common approach for single-pixel imaging (SPI) systems is
using the Hadamard illumination patterns [1], mostly preferred
over other types of patterns, such as those generated at
random [2], or those generated using chaos-based methods
[3]. The Hadamard approach defines a sequence of orthogonal
and binary illumination patterns that can be created by a
digital micromirror device (DMD) or a LED matrix.However,

Hadamard patterns do not yield a uniform energy distribution.
If we want to reconstruct an SPI image [4] using the Hadamard
illumination patterns, considering the order of the final virtual
image having ”N” virtual pixels in one line and ”M” virtual
pixels in one row, we would need a sequence of N x M patterns
(i.e., for a reconstruction of an image of 64 x 64 virtual
pixels, we need to project 4096 different illumination patterns).
In practice, for an application where the reconstruction time
is a critical factor, as for example it is the case in visual
sensing in drones or unmanned vehicles in general, it is not
time efficient to project all the required illumination patterns
sequentially. Instead, if we desire to reduce the amount of
illumination patterns to improve the processing (and pattern
projection) time and simultaneously maintain the quality of
the reconstructed single-pixel image (with PSNR > 10dB
and SSIM > 0.5), we propose using only about 10 % of the
originally required patterns by applying the Nyquist principle
[5] and the compressing sensing (CS) techniques [6]. For an
SPI-NIR vision system of low-resolution yielding images with
only 8 x 4 virtual pixels, if we consider the Nyquist principle
for determining the amount of minimum required samples [5],
to achieve a compression factor of 10%, at the theoretical level,
we would need to project only six patterns to reconstruct a
2D image of mentioned characteristics.Nevertheless, it results
impossible to accurately emulate this condition in practice,
mainly due to background noise and reflection and absorption
characteristics of the objects in the scene being depicted.
Beacuse will be need to increase the number of patterns to
be able to detect low-level details of 2D image reconstructed.
There are some techniques that operate over the Hadamard
matrix manipulating the illumination sequece, without need to
increasing the numbers of patters , such as Russian Doll [7]
technique , the Origami Pattern [8], and cake-cutting [9], that
improve the quality of 2D reconstrution. Taking into account
all the previously described methods, we propose developing
a projection sequence of areas Ap, that changes the on/off
state of the patterns through a genetic algorithm [10]. To be
able to define the Ap areas that will be modified, we must
define a fitness function that considers the set goals of single-
pixel image reconstruction times < 30ms and SSIM > 0.5. To
evaluate the performance of the projection areas, we will use
some scanning methods such as Zig-Zag [11], Spiral [12], or978-1-6654-0029-9/21/$31.00 ©2021 IEEE
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Fig. 1: Two different approaches applied to SPI: a) Front modulation:
the object illuminated by a light source and the light reflected by it
gets directed through a lens onto an SLM,where is capture by the
SPD, b) Back modulation: the SLM device project a sequence of
patterns and reflected light is capture by the SPD [1].

Hilbert path [13] adapted to the Hadamard projection sequence
to reconstruct 8 x 4 virtual pixel images. As reconstruction
algorithms, we will use the Compressive Sensing (CS) algo-
rithm Batch-OMP [14] to determine our method’s performance
under different background noise conditions.

Integrating NIR vision systems into UAVs offers higher
detection capabilities under low visibility or rainy or foggy
weather conditions, if compared to the classic performance of
traditional RGB sensor based cameras operating in the visible
(VIS) part of the spectra in the wavelength range between 400
and 800 nm. In this work, we present a proof of concept of an
SPI-NIR low-resolution imaging system based on a Hadamard
on-off firing projection strategy illumination sequence, using
GA to improve the quality of the reconstructed 2D images.
With this approach, we aim at additionally increasing the
robustness of our SPI-NIR system in outdoor conditions for
UAV applications.

II. SINGLE-PIXEL OBJECT RECONSTRUCTION

The generation of single-pixel images is based on the re-
construction of the spatial information embedded in the output
signals produced by a single pixel detector (SPD) in response
to a sequence of structured illumination patterns created using
SLM, DMD, or other similar active illumination technologies.
There are two types of configurations that can be used in
SPI. Namely, the structured illumination scheme termed front
modulation (see Fig.1a), and a structured detection scheme
termed back modulation (see Fig. 1b).

The relationship between the structured and reflected light
signal measurement can be expressed using Eq. (1) [1].

Si = α

M∑
x=1

N∑
y=1

O (x, y) Φi (x, y) (1)

In Eq. (1), (x, y) are the spatial coordinates, O denotes
the measured output signal of the used SPD, considering
additionally the SPD and the depicted object reflectivities (see
Fig.1) , Φi is ith structured pattern of size M x N, Si is
the ith single-pixel measurement corresponding to Φi, and α
is a constant factor defined by the opto-electronic response
of the used SPD. From the previously defined sequence of
structured illumination patterns projected onto the scene, and

the measured SPD output signals generated in response to
each of those projected illumination patterns, if compressive
sensing (CS) algorithms such as as Batch-OMP [14] are
applied, the single-pixel image I(x, y) can be reconstructed.
The reconstructed image I(x, y) can be defined as the inner
product of Si, the measured output signal generated by the
SPD, and the structured illumination pattern Φi(x, y) used
to produce said response, additionally proportional to the
measured object reflectivity O [1], as expressed in Eq. (2).

I (x, y) = α

M∑
x=1

N∑
y=1

SiΦi (x, y) (2)

A. Generation of the Hadamard sequence of patterns

To generate the Hadamard sequence of patterns, firstly, we
need to define a square matrix H, defined by the Eq. (3),
where its components are +1 or -1 with two distinct rows
that coincide in exactly n/2 positions, and must satisfy the
condition HHT = nI . For N orders of the H matrix, we use
the Kronecker product, also defined in Eq. (3), where 2k is an
integer with k > 0, and the size of the H matrix is M x N (the
example matrix where M = N, is presented in the Eq. (4)) [4],
with m = 1, 2, 3,..., M, and n = 1, 2, 3,..., N. From the H matrix
defined, we can construct the Hadamard sequence using the
Sylvester’s recursive matrix generation principle defined by
Eq. (2) to obtain the Hadamard matrix H

2k
(m,n).

H
2k

=

[
H

2k−1
H

2k−1

H
2k−1

−H
2k−1

]
= H

2
⊗H

2k−1
(3)

H
2k

=


H (1, 1) H (1, 2) ... H (1, N)
H (2, 1) H (2, 2) ... H (2, N)
... ... ... ...

H (M, 1) H (M, 2) ... H (M,N)

 (4)

The Hadamard based sequence of projections presents some
limitations, mainly due to the fact that the coefficients of the
Hadamard matrix do not present a uniform energy distribution.
Moreover, its energy packing efficiency (EPE) is also low
[14], which decreases the quality of the reconstructed image
when using only a few samples together with CS image
reconstruction algorithms. A proposed solution to improve
the quality of the image reconstruction is to apply different
types of projection sequences, based, for example, on the Zig-
Zag [11], Spiral [12], or Hilbert [13] space filling curves
(see Fig.2). These methods provide the best EPE relation,
increasing the quality of the reconstructed images.

III. REGION DEFINITION FOR PROJECTION OF
ILLUMINATION PATTERNS

To define the projection areas Ap, we start by dividing all
the Hadamard N x N projection patterns required (for our
application, the maximum required number of patterns is 64)
into groups of N / 4, each containing a number of N / 16
patterns (see Fig.3a). These groups will be defined as Ap

projection areas and represented as a matrix Hp defined by
Eq. (5).
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Fig. 2: Hadamard H64 scanning scheme, a) basic Hadamard se-
quence, b) Hilbert scan [13], c) Zig-Zag scan [11], d) Spiral scan
[12].

Hp =


Ap1

Ap2
Ap3

Ap4

Ap5
Ap6

Ap7
Ap8

Ap9
Ap10

Ap11
Ap12

Ap13
Ap14

Ap15
Ap16

 (5)

The matrix Hp is optimized to increase the quality of
the reconstructed image while maintaining the processing
time required < 30ms, using the number of used Hadamard
patterns between 20 and 80%. As an optimization strategy, a
genetic algorithm method (GA) [15] can be applied, in which
the elements of the Hp matrix are encoded to form a binary
vector (forming the GA initial population vector), where the
”1” elements define the groups without a change through-
out the Hadamard sequence of patterns, and ”0” elements
represent the groups of matrix elements that do undergo a
change throughput the sequence of Hadamard patterns, being
sequentially switched ”on” and ”off”.

A. Definition of the most optimum projection of Hadamard
patterns using illumination regions defined by the GA algo-
rithm

To determine the most optimal sequence of Hadamard
patterns to be projected in order to obtain the highest pos-
sible quality of the reconstructed images, as defined by the
application of figures of merit PSNR > 10dB and SSIM
> 0.5, it is necessary to define which projection sequences
are necessary to be inverted to comply with our goal. To do
this, GA was used to determine the most optimal ”on” and
”off” conditions of the different Hadamard matrix elements
throughout the different pattern sequences in an evolutionary
way. We used our data-set formed with images of spherical and
square objects, using 8 x 4 pixel image sizes for test. Initially,
we defined a Hadamard projection sequence of 64 patterns
divided into 16 groups (see Fig.3b) containing four elements
of the projection sequence (see Algorithm 1, input elements).
These elements were used to form the vector Vp that contains
the matrix elements positions encoded in a binary form, and
its dimensions are of 1 x 16. For the GA based evaluation
process used, it was necessary to define an initial population
of N = 8, divided into six parents. This initial population is
an 8 x 16 pixel matrix containing random data (see Algorithm
1, line 2). For the evaluation of the projection sequences, a
fitness function was defined, which will receive the Vp vector
containing the positions of the different Hadamard matrix
elements throughout the sequence of generated patterns, that

(a) (b)

Fig. 3: Sequence area generation Ap using GA algorithm, a)
Hadamard projection sequence of 64 patterns divided into 16 groups
containing four elements of the projection sequence, area projection
Ap. b) GA Algorithm that evaluates the different sequence switching
on-off sequence in the Hadamard projection using the vector Vp with
position binary of the groups.

correspond to the population to be evaluated (see Algorithm
1, line 4). We used the Zig-Zag [11], Hilbert [13], and
Spiral [12] scanning sequences in a comparative study for the
reconstruction of the single-pixel image of interest.

The fitness function used performs image reconstruction
using Batch-OMP algorithms, and it evaluates the best projec-
tion sequence calculated, considering the levels of SSIM and
PSNR projected [16], as well as the processing time required
for image reconstruction. This process is iterative, setting the
maximum number of generations to 100 (see Algorithm 1, line
3). Every 16 generations, a mutation takes place in order to
find a new population (see Algorithm 1, line 6-7). Once the
iterative process finishes, the algorithm calculates the fitness
of the best suited population (see Agorithm 1, line 10), which
determines the best vector Vp obtained containing the exact
positions of the areas Ap that must be inverted in the ”on”-
”off” switching sequence in the Hadamard projection (see
Algorithm 1, line 11), as shown in Fig.3b.

IV. EVALUATION OF THE METHOD PROPOSED
USING HADAMARD REGION-PROJECTIONS

CALCULATED BY THE GA ALGORITHM

To evaluate the performance of the proposed Hadamard
region-projection method, where the projected regions are
calculated using the GA algorithm, we reconstructed an SPI-
NIR 2D image of a square object (see Fig.5b), and another one
of a sphere (see Fig.5a), using the Batch-OMP algorithm to
process the data measured in an environment with controlled
illumination (see Fig.4a) at a distance of 18 cm from the
photodetector. For the latter, we additionally carried out a
comparative study between the images reconstructed using
the Hadamard region-projection method on the one side, and
unmodified Hadamard patterns on the other. In both cases,we
used different scanning sequences using the Basic, Zig-Zag
[11], Hilbert [13], and Spiral [12] approaches, respectively,
adding each time different levels of background illumination
(see Fig.4b) in order to simulate different outdoor conditions:
very-cloudy (5 KLux), half-cloudy (15 KLux), midday (30



Algorithm 1: Regions-projection Hadamard GA algo-
rithm [15]:

1 Function RegionProjection (Ap, I, Sm, ng) :
Input : A population vector Ap is defined, image I

and scanning Basic, Zig-Zag, Hilbert or
Spiral Sm, number of generation ng

Output: On-off switching sequence optimized of
Hadamard

2 Initialization:Population pop matrix 8x16
3 for it = 1 to ng do
4 fitnessGA= fitness (pop, Sm)
5 parents = poolGA(pop, fitnessGA)
6 offspringC = crossover(parents)
7 offspringM = mutationGA(offspringC)
8 pop = [parents, offspringM]
9 end

10 fitnessGA= fitness (pop, Sm) contains the vector
sequence of switch on-off area Ap sequence
Hadamard

11 On-off switching sequence in the Hadamard projection
12 return

(a) (b)

Fig. 4: Experimental setup to vision system SPI-NIR with active illu-
mination in the wavelength 1550 nm at configuration back modulation
(see Fig.1b),a) testing bench with controlled illumination background
range of intensity between 0 to 50 KLux, b)polar intensity diagram
of source light of the type semi-direct used for the testing bench.

KLux), and clean-sky (40-50 Lux). In order to evaluate the
capabilities of each method pursued, we compared the ob-
tained levels of PSNR, SSIM, as well as the processing time
required in each image reconstruction.

For the condition of Hadamard region-projection, the fol-
lowing areas were defined for the case of spherical type
surfaces in terms of the projection sequences: Vp= [1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0], scanning Zig-Zag Vp = [0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], scanning Hilbert Vp
= [1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0] and scanning
Spiral Vp = [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,].For the
case of square type surfaces, projection sequences Vp=[1, 1,
0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0], Zig-Zag scanning Vp =
[0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], Hilbert scanning
Vp = [1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0], and Spiral
scanning Vp = [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

A. Discussion: Method of Hadamard region-projections cal-
culated using the GA algorithm

During the performed tests, we could observe that for
spherical surfaces (see Fig. 5b) in outdoor conditions with

background illumination levels between 20 and 40 Klux, if
Zig-Zag and Spiral surface filling curves (SFC) were respec-
tively used, the reconstructed images presented a PSNR (28
dB) higher than when other scanning methods were used (see
Fig. 8c,d), yielding an SSIM between 0.6 to 0.68 (see Fig.
6c,d). The images reconstructed using the Hilbert scanning
curve and the basic projection sequence, respectively, yielded
under the same measuring conditions an SSIM range between
0.58 and 0.65 and a very similar PSNR (27 - 28 dB). The
measurements using the unmodified patterns method showed
an SSIM range between 0.5 and 0.56 (see Fig. 6a,b) for PSNR
= 27 dB. The measurements performed using the Zig-Zag (see
Fig. 6c) and Spiral (see Fig.6d) SFCs, respectively, present
changes in the ”on”-”off” sequence of 12 and 13 Ap areas, if
compared to the basic scanning (with 5 Ap areas) and the
Hilbert scanning approach (with 8 Ap areas), respectively.
These last two scanning methods present more high-frequency
information with a processing time between 28 and 29 ms
(see Table.II), with an improving rate of time 11% (6) for
the Spiral scan . When the same experiments were performed
depicting square surfaces (see Fig. 5a), we observed that the
Hadamard region projection method presented a higher image
reconstruction efficiency with reconstruction times of around
28 ms for the basic, Hilbert, and Zig-Zag scanning methods
(see Table. I), with an improving rate of time 18%(6) for the
Zig-Zag scan . More significant changes in the projection areas
were observed here, if compared with the same measurements
performed using spherical surfaces. In both cases, eight Ap

areas were defined for the basic projection sequence and
the Hilbert curve based method, 12 Ap areas for the Zig-
Zag approach, and 14 Ap areas using the Spiral curve. The
Hilbert scanning method maintained an SSIM level oscillating
between 0.86 and 0.89 (see Fig.7b) with a PSNR level between
30 to 29 dB (see Fig.7b). For the case where Hadamard region-
projections were used, calculated through the GA, the SSIM
level yielded was situated between 0.8 and 0.86 (see Fig.7b)
with a PSNR level between 28.7 and 28.2 dB (see Fig.7b).
Therefore, this scanning method results being more robust if
compared to the other scanning methods proposed, such as the
Basic, Zig-Zag, and Spiral methods, respectively (for SSIM
values, see Fig. 7a,c,d, and for PSNR see Fig. 9a,c,d).

TABLE I: SPI-NIR 2D image reconstruction time with unmod-
ified patterns method and region-projection Hadamard GA for
cube object

Pattern TimewithoutGA(ms) TimeGA(ms) Improvement rate (%)
Basic 30.6 28.49 6.89
Hilbert 31.73 27.7 12.7
Zig-Zag 34.42 27.93 18.85
Spiral 28.38 27.79 2

V. PROPOSED REGION-PROJECTION METHOD
APPLIED TO SINGLE-PIXEL UAV APPLICATIONS

The atmosphere’s capacity to absorb radiation in the wave-
length range belonging to the near-infrared (NIR) part of the
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Fig. 5: 2D SPI-NIR Image reconstructed size 8x4 in static condition
with modified patterns method and region-projection Hadamard GA
algorithm at a distance of 18 cm of the photodetector using basic scan,
Hilbert scan, Zig-Zag scan, and Spiral scan. Square object intensity
light background: a) 5KLux , c) 40KLux . Sphere object intensity
light background: b) 5KLux , d) 40KLux.

(a) (b)

(c) (d)

Fig. 6: SSIM level of reconstructed SPI-NIR 2D image spherical
surface with unmodified patterns method (blue line) and region-
projection Hadamard GA algorithm (red line) at distance at 18 cm
of the photodetector: a) Basic scan, b) Hilbert scan, c) Zig-Zag scan,
d) Spiral scan.

(a) (b)

(c) (d)

Fig. 7: SSIM level of reconstructed SPI-NIR 2D image square surface
with unmodified patterns method (blue line) and region-projection
Hadamard GA algorithm (red line) at distance at 18 cm of the
photodetector: a) Basic scan, b) Hilbert scan, c) Zig-Zag scan, d)
Spiral scan.

TABLE II: SPI-NIR 2D image reconstruction time with un-
modified patterns method and region-projection Hadamard GA
for sphere object

Pattern TimewithoutGA(ms) TimeGA(ms) Improvement rate (%)
Basic 29.89 27.5 8
Hilbert 29.14 27.1 12.7
Zig-Zag 30.03 27.2 9.7
Spiral 30.7 27.8 11

(a) (b)

(c) (d)

Fig. 8: PSNR level of reconstructed SPI-NIR 2D image spherical
surface with unmodified patterns method (blue line) and region-
projection Hadamard GA algorithm (red line) at distance at 18 cm
of the photodetector: a) Basic scan, b) Hilbert scan, c) Zig-Zag scan,
d) Spiral scan.

spectra is the best option for generating single-pixel (or line-
sensor-based) images based on NIR active illumination for
unmanned systems, as this phenomena reduces the amount
of background illumination present in the illumination wave-
length range of interest thus reducing also the amount of
noise present in the system. Throughout the last decades, a
continuous improvement of single-pixel image reconstruction
algorithms has been taking place, aiming at processing times

(a) (b)

(c) (d)

Fig. 9: PSNR level of reconstructed SPI-NIR 2D image square surface
with unmodified patterns method (blue line) and region-projection
Hadamard GA algorithm (red line) at distance at 18 cm of the
photodetector: a) Basic scan, b) Hilbert scan, c) Zig-Zag scan, d)
Spiral scan.



Fig. 10: Schematic view to illustrate a single-pixel NIR vision system
carried by a drone [14].

short enough to allow for near real-time image processing
and thus enabling autonomous navigation. If decision making
depends on the information to be extracted from reconstructed
single pixel images, the system response times acquire a
paramount importance. For this type of applications, having a
high resolution of images of the environment presents a high
limitation in the vehicle’s response time, so reducing the size
to an 8 x 4 pixel image resolution is a possible way to address
this issue. Although this approach limits the quality of the
reconstructed images, developing techniques that can improve
the SSIM level of the reconstructed image in a processing time
< 30ms allows to increase the single-pixel vision system’s
capabilities for UAV applications (see Fig. 10).

improvementtime% =
(TimewithoutGA − TimeGA)

TimewithoutGA
x100

(6)

VI. CONCLUSION

In this paper, we presented a method for generating
Hadamard patterns based on the Hadamard region projection
method using the GA to define these regions of interest.
In order to improve the quality of the reconstructed single-
pixel images carried out by the SPI-NIR system proposed,
with potential applications for UAV navigation, our proposed
Hadamard region projection method yielded an acceptable
performance. The 8 x 4 pixel single-pixel images obtained with
this method had an SSIM > 0.6 and a PSNR> 28dB, respec-
tively, that could be compared with the Hadamard unmodified
patterns method yielding an SSIM < 0.6 and PSNR< 25dB
that required almost 3 ms more processing time.We depicted
in our experiments objects with sphere and square surfaces,
respectively, using different scanning curves, namely the Zig-
Zag, the Spiral, and the Hilbert curves, respectively, under
controlled background illumination ranging between 20 and
40 Klux. Our results indicate that the Hilbert-based scanning
method combined with the Hadamard region projection yield
the best performance in the SPI-NIR 2D image reconstruction,
if the figures of merit SSIM and PSNR, as well as the image
reconstruction processing time(see Table. I,II), are taken into

account. The proposed method also proved to be robust enough
in background noise conditions. In the evaluation, we fixed the
goal to reach a reconstruction time below 30 ms, with Hilbert
and Zig-Zag methods being the fastest ones, and the Spiral
based one, the slowest. The availability to have processing time
< 30ms in single-pixel imaging allows to increase the single-
pixel vision system’s capabilities with potential applications
UAVs.
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